Quantcast
Channel: Nader Ale Ebrahim's academic activities and relevant topics
Viewing all 1665 articles
Browse latest View live

Peer Evaluation : Virtual R&D Teams: A potential growth of education-industry collaboration

$
0
0
Title : Virtual R&D Teams: A potential growth of education-industry collaboration
Author(s) : Nader Ale Ebrahim
Abstract : Introduction: With the advent of the global economy and high-speed Internet, online collaboration is fast becoming the norm in education and industry [1]. Information technology (IT) creates many new inter-relationships among businesses, expands the scope of industries in which a company must compete to achieve the competitive advantage. Information systems and technology allow companies to coordinate their activities in distant geographic locations [2]. IT is providing the infrastructure necessary to support the development of new collaboration forms among industry and education. Virtual research and development (R&D) teams represent one such relational form, one that could revolutionize the workplace and provide organizations with unprecedented levels of flexibility and responsiveness [3-4].
Keywords : Virtual R&D teams, Collaboration, virtual teams, SMEs, Education

Subject : Technology Management
Area : Management
Language : English
Year : 2011

AffiliationsResearch Support Unit, Centre of Research Services, Institute of Research Management and Monitoring (IPPP), University of Malaya, Malaysia
Journal : Academic Leadership Journal
Volume : 9
Issue : 4
Pages : 1-5
Isbn : 1533-7812
Attribution Share Alike

Peer Evaluation : Virtual R&D Teams: A potential growth of education-industry collaboration

A potential growth of education-industry collaboration

$
0
0

A potential growth of education-industry collaboration


A potential growth of education-industry collaboration

Ingeniería Mecánica - Actualidad y perspectivas en la enseñanza del área de manufactura a estudiantes de ingeniería

$
0
0
Current and future perspectives in teaching manufacturing area to engineering students
 
 
Juan David Orjuela-Méndez, José Manuel Arroyo-Osorio, Rodolfo Rodríguez-Baracaldo
Universidad Nacional de Colombia. Facultad de Ingeniería-Sede Bogotá. Bogotá. Colombia.
 
 

RESUMEN
Este trabajo es una revisión sobre los desafíos que se presentan en la formación de ingenieros para desempeñarse en manufactura y las propuestas de tipo curricular y didáctico para enfrentar los desafíos detectados. Se decanta que la industria de manufactura contemporánea está sometida a una dinámica de transformación paulatinamente más rápida para satisfacer las demandas locales y globales. Varios investigadores plantean que esta dinámica se debe reflejar también en la educación en ingeniería e indican la necesidad inaplazable de integrar el conocimiento práctico en el currículo. Se evidencia también una rápida expansión e influencia de las tecnologías de la información y comunicaciones en los procesos educativos y son puestos en consideración los nuevos estilos de aprendizaje de los jóvenes y su influencia en las prácticas utilizadas en el aula. Finalmente, se reportan varios enfoques estructurados para evaluar, ajustar y rediseñar las acciones de formación, entre otras, el aprendizaje por proyectos.
Palabras claves: ingeniería, procesos de manufactura, enseñanza, aprendizaje, enfoques estructurados.

ABSTRACT
This paper is a review of the challenges presented in the training of engineers to work in the manufacturing industry and the proposals of curricular and didactic kind to address the challenges identified. It is remarkable that the modern manufacturing industry is under a dynamic transformation gradually faster to meet the local and global demands. Several researchers have suggested that this dynamic should be reflected also in engineering education and indicate the urgent need to integrate practical knowledge into the curriculum. Also is found a rapid expansion and influence of information and communication technologies in education and are put into consideration the new learning styles of young people and their influence on classroom practices. Finally, are reported several structured approaches to evaluate, adjust and redesign the training actions, among others, project based learning.
Key words: engineering, manufacturing processes, teaching, learning, structured approaches.

 
 
INTRODUCCIÓN
La manufactura puede ser, sin duda, un componente estratégico de la economía de un país. Este sector, lleno de actividades desafiantes que influyen en la productividad y competitividad, está íntimamente conectado a las radicalmente nuevas formas de circulación de productos y servicios en el planeta (globalización, negocios digitales, en línea y en tiempo real), y con ello, a la generación de riqueza material y valor agregado social. El presente artículo se ha realizado con el propósito de entender el contexto actual y las necesidades específicas para desarrollar la enseñanza del área de manufactura a estudiantes de ingeniería.
La industria de fabricación está pasando por un proceso de cambios que se han acelerado en los últimos años. En medio de un ambiente de aguda competencia a nivel global, los fabricantes seguirán gestionando la manufactura de sus productos donde vean las condiciones más favorables en términos de costos, tiempo y calidad. Actualmente, las fluctuaciones y dinámicas en el mercado implican, con más fuerza, diseños novedosos y diferentes, así como la disminución en los tamaños de los lotes de producción, lo que conlleva a su vez la necesidad de diseñar y fabricar con mínimos retrasos [1]. Todo lo anterior produce consecuencias evidentes en términos de los requerimientos de formación de los ingenieros que gestionarán los diferentes sistemas de manufactura.
La industria de manufactura contemporánea debe transformarse permanentemente para lograr sostenibilidad y competitividad [2]. También está sometida a dinámicas que requieren de ella altos niveles de flexibilidad y una adecuada capacidad de interpretar lo que sucede en su ambiente, así como la habilidad de planear y llevar a cabo distintas estrategias de fabricación [3]. Para alcanzar estos objetivos, deben apropiarse los nuevos conocimientos obtenidos en los procesos de investigación y desarrollo a todo nivel, que incluyen las innovaciones en la enseñanza de la ingeniería de manufactura, así como las estrategias exitosas que utilizan los encargados del manejo y puesta en marcha de las tecnologías de fabricación en la industria. Dentro de estos, los profesionales en diferentes especialidades de ingeniería, como mecánica, industrial, eléctrica, electrónica e informática son generalmente los encargados de proporcionar las competencias en ingeniería de manufactura a las empresas en áreas como la mecánica, la investigación de operaciones, la fabricación, la cibernética, la electrónica, etc. [1].
Rolstadås [1, 4, 5], indica en sus estudios sobre educación global que el dominio de la manufactura es de orientación práctica. Las nuevas soluciones y mejoras se encuentran a menudo mediante la experimentación en la práctica. En eso difiere de otras áreas, donde en general la teoría y el know-how son las fuerzas dominantes y, a menudo, son fuente de innovaciones. Entonces, para formar ingenieros de fabricación, es esencial que este conocimiento práctico se vea integrado en el currículo y esto, al parecer, no sucede actualmente, pues de acuerdo con lo encontrado por Rolstadås [1], los programas profesionales existentes en Manufactura tienden a poner mayor énfasis en la teoría. De lo anterior se infiere la necesidad de evaluar, y en últimas, rediseñar, las estrategias didácticas para formar ingenieros en las áreas relacionadas con la industria de manufactura en general.
De esto último se infiere la necesidad de una nueva concepción curricular en la que se evidencien las estrategias didácticas requeridas para formar ingenieros en las áreas relacionadas con la industria de manufactura en general. En Estados Unidos [6] y en Asia Oriental [7], por ejemplo, ya se han dado pasos significativos y se reseñarán varios de ellos. Son, en cambio, relativamente pocos (en comparación con los estudios mundiales reportados) los esfuerzos divulgados en los países de América Latina, de los cuales se incluyen algunos ejemplos [8-12] que están, sin embargo, más orientados a competencias generales que a las necesidades específicas de la formación en manufactura. Otros pocos estudios reconocen los logros alcanzados en regiones desarrolladas y sus implicaciones para Latinoamérica [13].
 
Desafíos para formar ingenieros de manufactura
Como una consecuencia natural de los cambios que se han generado en las tendencias de la industria de producción, a nivel global se ha observado la necesidad, por parte no solamente de la academia, sino de los líderes en la industria y de los entes gubernamentales de los países, de reformular los atributos profesionales y personales esperados por parte de los futuros ingenieros; esta afirmación se concluye de los resultados publicados en distintas partes del mundo, varios de los cuales se presentan en esta sección.
Dentro del gran número de procesos de manufactura disponibles actualmente, los procesos de fabricación por arranque de viruta son todavía muy utilizados para la realización de todo tipo de productos. En comparación con otras tecnologías, el proceso de mecanizado se caracteriza por su alta calidad de superficie y por su precisión. Actualmente alrededor del 70% de todas las máquinas dedicadas a la producción son máquinas herramientas para ejecutar procesos de maquinado, de ahí su gran importancia en la industria de manufactura [14] y la necesidad de formar profesionales con competencias especificas para gestionar sistemas de fabricación que utilicen mecanizado.
Choi [15] destaca el rol fundamental que tiene la educación de los futuros ingenieros de manufactura, no solamente para mantener las fortalezas en el contexto de la fabricación dentro de su estado actual, sino para permitir la adquisición de nuevas capacidades y habilidades de frente a desafíos y tecnologías emergentes. Este proceso implica, de acuerdo con lo discernido por Crawley et al. [16], analizar permanentemente las mejoras introducidas en el ámbito de la educación en ingeniería.
G. Bengu y W. Swart [17] mencionaban en su momento que la educación en manufactura no estaba acorde con los avances recientes de la industria, y que para mejorarla, era necesario cambiar no solamente el enfoque de enseñanza - aprendizaje, sino incorporar nuevas herramientas y tecnologías que promuevan el aprendizaje efectivo y que faciliten el mejoramiento continuo. Para los países en desarrollo, es aún más cierta esta observación, teniendo en cuenta que estas naciones deben superar la brecha simultáneamente en industria y en educación.
Una reflexión de notable interés la aporta S. Fenster [18], quien en su artículo de opinión frente a la pregunta de por qué las instituciones de educación superior no están formando la fuerza de trabajo acorde a las necesidades contemporáneas, indica que, al menos en parte, la culpa es de las escuelas universitarias de ingeniería que no están preparando a los jóvenes para las oportunidades de desempeño profesional que estarán abiertas para ellos. El autor señala que las escuelas de ingeniería siguen preparando a los graduados sin un adecuado reconocimiento de las oportunidades que existen ni de las posibles opciones profesionales que sus egresados seguirán. S. Fenster [18], reseña también algunas de las habilidades en las que falta enfatizar en la formación de ingenieros, con base en un estudio adelantado por la Society of Manufacturing Engineers (SME).
W. ElMaraghy y H. ElMaraghy [19] señalan que la educación en manufactura está viviendo el mayor cambio real en las últimas décadas, puesto que las instituciones se esfuerzan por preparar mejor a los graduados de ingeniería para actuar en la dinámica economía industrial a nivel global. Esto se lleva a cabo a menudo con grandes limitaciones en los presupuestos, requiriéndose entonces enfoques nuevos e innovadores a nivel educativo, en los cuales tanto los recursos como los requisitos de la industria se combinen para generar programas que satisfagan las necesidades formativas de los estudiantes. Así mismo, autores como K. Stephan y V. Sriraman [20], afirman que cualquier sistema de educación que ignore la realidad en la que se encuentran las compañías multinacionales, cadenas de suministro globales y los mercados internacionales se debe percibir como "anticuada y provincial". Cabe resaltar, dentro de la misma línea, el resultado reseñado por I. Hunt et al. [21] en un estudio dentro del marco de la iniciativa IMS (Intelligent Manufacturing Systems), que indica la necesidad de un cambio radical en el sistema educativo para los profesionales de la fabricación. Así mismo, identificó la necesidad de un plan de estudios de aplicación global y bien definido en la industria manufacturera que pudiera mejorar significativamente las capacidades de los ingenieros.
J. A. de Simone [22] indicaba en su momento que, en síntesis, las estrategias curriculares y metodológicas en la educación técnico-profesional deberían, entre otros aspectos, considerar (o elaborar) currículos flexibles para adaptarse rápidamente a los cambios del sistema productivo, así como ofrecer planteamientos e interrogantes determinados mediante la investigación participativa sobre las necesidades del sistema productivo en relación con la tecnología, los tipos de productos, los mercados y otros factores. H. Vessuri [23] concluye que una serie de cambios deben ser incluidos en una estrategia de modernización y desarrollo dinámico del sector educativo para asegurar su eficacia, entre ellos, el replanteo de las relaciones entre pregrado y posgrado, acompañando la transformación institucional en términos de una gestión universitaria más moderna, el establecimiento de carreras cortas, medianas y largas, así como la redefinición de las relaciones entre carreras, profesiones, investigación y educación continua. Ambos, de Simone [22] y Vessuri [23], reconocen la importancia de incorporar estrategias de aprendizaje que respondan a la necesidad de las empresas manufactureras de contar con el recurso humano idóneo, con conocimiento de elementos prácticos que contribuyan al mejoramiento y optimización de los procesos de fabricación. Es pertinente aquí retomar, como ilustración de la problemática enunciada, las palabras de Peters [24]: "La educación en diseño y manufactura ha sido siempre un desafío, la irrupción de la electrónica y las técnicas informáticas en los sistemas de manufactura no aliviaron el problema. La industria manufacturera en general no se limita a las prácticas tradicionales y está dispuesta permanentemente a utilizar las más recientes adquisiciones de la ciencia y la tecnología, siempre y cuando demuestren ser fiables y rentables".

Influencia de los estilos de aprendizaje de los jóvenes
Entre las iniciativas que han buscado identificar las tendencias pedagógicas adecuadas para el desarrollo de competencias en los futuros ingenieros está el trabajo pionero desarrollado por R. Felder y L. Silverman [25], en el cual se explora la respuesta a tres preguntas: ¿Qué aspectos del estilo de aprendizaje son particularmente relevantes (o significativos) en la educación en ingeniería?, ¿Cuáles estilos de aprendizaje prefieren los estudiantes y de ellos cuáles se ven favorecidos por los estilos de enseñanza de la mayoría de docentes?, ¿Qué se puede hacer para llegar a los estudiantes cuyos estilos de aprendizaje no son trabajados por los métodos habituales de enseñanza de la ingeniería?. De acuerdo con las conclusiones obtenidas por los autores, se afirma que los estilos de aprendizaje de la mayoría de los estudiantes de ingeniería y los estilos de enseñanza correspondientes a la mayoría de sus profesores son incompatibles en varias dimensiones.
Los autores mencionados [25] afirman que la mayoría de los jóvenes contemporáneos son visuales, sensoriales, inductivos y activos; además, algunos de los estudiantes más creativos abordan el aprendizaje de manera global, mientras que la educación en ingeniería es primordialmente de carácter auditivo, abstracto (en sentido intuitivo), deductivo, pasivo, y secuencial. Estas diferencias conducen a los estudiantes a pobres desempeños, así como ocasionan la frustración de sus profesores, y una pérdida para la sociedad de muchos ingenieros potencialmente excelentes. De otra parte, se menciona que a pesar de que hay una amplia diversidad de estilos con los cuales los alumnos aprenden, incluir un número relativamente pequeño de las técnicas en una clase tradicional debería ser suficiente para satisfacer las necesidades de la mayoría (o incluso la totalidad) de los estudiantes en cualquier clase; para ello, los autores sugieren un conjunto de técnicas específicas a ser aplicadas.
En el trabajo de J. Mills y D. Treagust [26] se discute la aplicación de dos estilos de aprendizaje predominantes en la educación en ingeniería (aprendizaje basado en problemas vs. basado en proyectos), examinando algunas diferencias entre ellos y algunos ejemplos de uso. Los autores mencionan que, a pesar de los desafíos que impone el mundo actual, el modelo predominante de la enseñanza de la ingeniería sigue siendo similar al practicado en la década de 1950 "tiza y charla", con grupos de clase de tamaño considerable, sobre todo en las disciplinas de los primeros años de estudio. Afirman estos autores que los avances en los enfoques de aprendizaje centrados en el estudiante, como el basado en problemas y el aprendizaje basado en proyectos, han tenido relativamente poco impacto en la educación tradicional en ingeniería. Afirman también, que se ha demostrado que dentro de la academia y en el ejercicio de la ingeniería están más arraigados los conceptos de proyectos que los conceptos de aprendizaje basado en problemas. Parece, pues, probable que el aprendizaje basado en proyectos sea más fácilmente adoptable por los programas universitarios de Ingeniería que el aprendizaje basado en problemas.
Aspectos de diseño curricular y didáctico
En las secciones anteriores se ha presentado el contexto de formación y desempeño profesional al que se ve enfrentado el futuro ingeniero de fabricación, cabe examinar ahora las posibilidades de reforma e intervención en términos de los aspectos curriculares (es decir, referentes al plan de estudios, contenidos y evaluación) y las estrategias didácticas (es decir, las acciones llevadas a cabo directamente en el aula por parte del docente) que se han propuesto para atender a las necesidades planteadas.
Sobre diseño curricular en general es importante tener en cuenta que hay múltiples concepciones de currículo enunciadas por diferentes autores, al respecto Scott [27] reseña que es posible hablar del currículo como un conjunto de objetivos del comportamiento, según lo propuesto por Popham, o como un proceso, de acuerdo a la visión de Stenhouse. La concepción orientada a la verificación de objetivos, corresponde más cercanamente al concepto de la formación por competencias. Particularmente en relación con el diseño curricular basado en competencias y aplicado a la enseñanza de la ingeniería, es importante el reporte de
R. Felder y R. Brent [28], en el que los autores proponen un método para salvar la brecha existente al tratar de dotar a los estudiantes de ingeniería con las habilidades y actitudes enumeradas en los Engineering Criteria 2000 formulados por el ABET (Accreditation Board for Engineering and Technology). Para ello se propone, por ejemplo, la descripción general del proceso de acreditación y se aclaran el conjunto de términos asociados a este proceso (objetivos, resultados, indicadores de resultados, etc.), también proporciona orientación sobre la formulación de objetivos de aprendizaje del programa y métodos de evaluación, lo cual incluye identificar y describir las técnicas de instrucción que deberían preparar efectivamente a los estudiantes para lograr las cualidades enunciadas por ABET al momento de graduarse. El fin último es proveer una estrategia que permita integrar las actividades propias de un curso al momento de diseñar un programa educativo que satisfaga los requerimientos de los criterios ABET.
En cuanto a la didáctica de los procesos de manufactura, R. Todd et al. [29] se preguntan si la urgencia (entendida en el sentido de la necesidad) que han tenido las empresas industriales de superar los enfoques tradicionales inerciales en la organización y diseño de procesos de manufactura se ha propagado a los sistemas de educación en que se forman los ingenieros que actúan en estas industrias. En el caso que estos autores estudiaron, observan que, en los criterios incluidos dentro de los estándares ABET se ofrece una mayor flexibilidad a los programas tradicionales y se fomenta la innovación en el currículo del programa, concluyendo que esta flexibilidad y apertura a la innovación parecen proporcionar oportunidades para expandir los contenidos en Manufactura de muchos programas de ingeniería. En este mismo sentido se manifiesta D. Waldorf [30], al mencionar que la ingeniería de Manufactura, como disciplina, debe evolucionar rápidamente para satisfacer las necesidades de la industria y, por tanto, los educadores en esta área deben hacer que evolucionen los sistemas y el currículo utilizados para preparar a las siguientes generaciones de ingenieros.
Una discusión interesante en torno a la reforma curricular en manufactura la proporcionan Jiang y Qi [31]; quienes describen algunos mecanismos para elevar la calidad de la enseñanza práctica, en términos de refinar los contenidos asociados al diseño y fabricación de maquinaria. Su discusión parte, entre otros hechos, de que han observado cómo los estudiantes no son capaces de desarrollar ciertas tareas correspondientes a diseño y manufactura una vez se encuentran desempeñándose en la industria. Estos autores indican como una posible explicación a este fenómeno la disminución en el tiempo de enseñanza, tanto total como especializada. En este panorama proponen como modelo de enseñanza el del profesor como guía y el estudiante como actor auto-determinante en el diseño de actividades prácticas para desarrollar en ellos las capacidades de expresarse, construir modelos, analizar, resolver y discutir problemas de ingeniería, innovar en el diseño de sistemas de máquinas y elementos, y la posibilidad de cooperar mediante el trabajo en equipo. Para ello estos investigadores han integrado actividades tales como simulación y programación de procesos de control numérico, manufactura y ensamble.
Como referente importante, resulta de interés ver que en Singapur, que es un país con una economía altamente influenciada por la manufactura, se han adelantado varios estudios a nivel de diseño curricular efectuados bajo el esquema de un estudio de mercado sobre las necesidades de la industria. Específicamente, S.G. Lee y W.N.P. Hung [32] concluyen que un internado de 24 semanas de prácticas formales en empresas, dentro del currículo en la Universidad de Nanyang, ha permitido que los estudiantes de ingeniería de manufactura puedan combinar el conocimiento del aula con la práctica real de la industria.
El modelo CDIO, un enfoque estructurado
Dentro de los enfoques educativos planteados ante los retos mencionados en la sección anterior se destaca el modelo CDIO que significa Conceive, Design, Implement and Operate (concebir o crear, diseñar, implementar y operar) y que está específicamente orientado a trasladar al currículo las necesidades de formación en ingeniería. Estas actividades constituyen un ciclo que, de acuerdo con lo propuesto por los autores de esta metodologia [33], debe constituirse en la espina dorsal de la formación de los futuros ingenieros. Es importante indicar que CDIO es una guía general, que cada institución debe implementar de acuerdo con sus características y la cultura universitaria particular.
En lo estructural, la implementación del modelo CDIO supone abordar dos aspectos fundamentales: qué enseñar y cómo enseñarlo. En relación con el currículo, es decir, qué enseñar, el modelo propone un plan de estudios: el CDIO syllabus. En relación con la didáctica e implementación (el cómo enseñar), se creó un cuerpo de lineamientos, los CDIO standards. Para tener una mirada general de ambos instrumentos, se presenta en la figura 1 un esquema que sintetiza los procesos a seguir.
Fig. 1. Implementación del modelo CDIO. Adaptado de [33]
El enfoque CDIO fue implementado por F. Lino y T. Duarte [34], para reformular un curso de Maestría en cerámicas impartido en la Universidad de Porto, si bien el modelo principal utilizado fue la denominada "reformulación de Bologna". Los autores destacan los efectos favorables que tienen el empleo de la evaluación continua y la búsqueda de información permanente por parte de los estudiantes. También ha sido implementado en el ámbito del curso denominado Manufactura Mecánica desarrollado en varias universidades de China [35], y que cubre aspectos de ciencia de materiales, ingeniería mecánica y eléctrica, y teoría de control. Los autores describen, como ejemplo, la aplicación específica en un proyecto de maquinado para un eje con secciones de distintos diámetros. Concluyen que la práctica de enseñanza basada en CDIO promueve en los estudiantes mejores habilidades comprensivas y conduce a resultados muy positivos en términos de mejora y optimización del aprendizaje.
Estrategias basadas en desarrollo de proyectos
Un caso de aplicación de diseño curricular especifico para procesos de mecanizado es el trabajo de M. Ssemakula [36], el cual describe un curso basado en prácticas de laboratorio bajo el enfoque hands-on. El curso proporciona una visión general para la comprensión del comportamiento en el mecanizado de los materiales de uso más frecuente, las técnicas básicas utilizadas en el procesamiento, la teoría científica que subyace en estos procesos, así como los criterios para la selección de los procesos adecuados. También incorpora una innovadora práctica de laboratorio, que consiste en proyectos de equipo que ayudan a los estudiantes a adquirir experiencia con determinados procesos de fabricación. Los proyectos comienzan con componentes simples que se pueden hacer en una sola máquina herramienta, y van progresando hacia la fabricación y montaje de un modelo de motor completamente funcional. El documento también discute la aplicación de las técnicas de aprendizaje colaborativo, utilizando herramientas de Internet para promover la interacción entre los miembros del equipo. En su discusión, el autor observa que hay varios estudiantes tentados a no participar completamente de las actividades del grupo, indicando que un elemento para evitar esto es incluir foros de discusión en línea, así como promover actividades desafiantes de aprendizaje colaborativo.
A nivel de sistemas completos, la Manufactura Integrada por Computador (CIM, por sus siglas en inglés), como tendencia reciente en el contexto industrial, ha sido objeto de investigación a nivel de currículo para ser integrada en los cursos tradicionales. Un ejemplo lo constituye el estudio realizado por Chowdhury y Mazid [37], en el cual se detallan los aspectos de diseño e implementación de un curso de CIM en la IUT (Universidad Islámica de tecnología, siglas en inglés), entre los que destacan los equipos empleados, los proyectos de curso llevados a cabo por los estudiantes y el desarrollo de cursos cortos que incorporan el tema. Los autores destacan que ha sido un desafío llevar a buen término la enseñanza de CIM, pero que de alguna manera se han visto resultados interesantes en las habilidades que adquieren los estudiantes, alcanzando parcialmente el objetivo planteado de proporcionar a la industria profesionales dotados con las competencias interdisciplinarias propias del ámbito de los sistemas CIM.
De otra parte, se observa la necesidad de desarrollar competencias específicas en maquinado, tales como el manejo adecuado de tecnologías de control numérico computarizado (CNC), en este sentido es destacable lo realizado por Fisher y Hofmann [38], quienes indican que muchas veces los estudiantes de ingeniería no están familiarizados con las máquinas que poseen este tipo de control, de manera que una vez están ejerciendo se les dificulta producir partes complejas en ellas. Con el objetivo de acercar al estudiante a dicha tecnología, los autores concibieron un curso de diseño y maquinado de moldes para inyección de plásticos a través de CNC. En este curso, los estudiantes llevaron a cabo proyectos de diseño e implementación de torneado y fresado mediante programación, así como el desarrollo de prototipos rápidos. En el trabajo se describe la metodología de evaluación para medir la efectividad didáctica de estos proyectos y los resultados indican que los estudiantes reconocieron fuertemente la importancia de incorporar este tipo de contenidos y habilidades en su formación.
Otro caso interesante de aplicación específica de aprendizaje activo y cooperativo en el ámbito de la manufactura se encuentra en el trabajo de N. Fang [39], en el cual se describe el resultado de implementar un enfoque de aprendizaje activo y cooperativo basado en proyectos (PB-ACL) que se ha desarrollado para hacer frente simultáneamente a cuatro brechas de competencias identificadas y que deben ser cerradas de cara a las necesidades de la industria de fabricación por los programas educativos actuales. Los vacíos de competencias identificados son: (a) conocimientos de procesos de fabricación específicos, (b) conocimiento general del negocio de manufactura, (c) comunicación oral y escrita, y (d) trabajo en equipo. Los autores desarrollaron un cuestionario tipo Likert [40,41] y otro abierto para evaluar los resultados de aprendizaje de los estudiantes.
Con un enfoque similar, Z. Zhou y A. Donaldson [42], realizaron una investigación sobre la enseñanza de un curso de procesos de fabricación bajo el enfoque de aprendizaje basado en proyectos (PBL, sigla en inglés) a nivel de pregrado, con el fin de concentrarse en la reducción de la brecha entre lo que se ha enseñado en el aula y lo que se practica en la planta de fabricación. En lugar del enfoque tradicional (conferencia, lectura, tarea, examen), a cada estudiante se le pide que complete un proyecto durante el semestre en las áreas de procesos y materiales de fabricación. Para medir la efectividad de dicho enfoque, los autores condujeron encuestas orientadas a medir la incidencia futura de la metodología aplicada en el ejercicio profesional.
También cabe destacar la investigación conducida por Pereira et al. [43], quienes adelantaron la implementación de enseñanza basada en proyectos en el desarrollo de una línea de manufactura para laboratorio en el marco de un curso de simulación y optimización de procesos; para ello describen el arreglo experimental, la metodología de evaluación y los resultados obtenidos por los estudiantes durante el curso, especialmente en términos de lo que se gana en la simulación de líneas de producción y en la aplicación de conceptos específicos de optimización. Los autores indican las ventajas de este tipo de enseñanza, que involucra el trabajo con experiencias realistas para los estudiantes aumentando su motivación y desarrollando en ellos habilidades prácticas; no obstante indican que emplear estudios de caso basados en problemas reales de la industria consume tiempo y requiere un conocimiento muy profundo del contexto.
 
Impacto de las tecnologías de la información
En el área emergente de aplicación de las TIC (tecnologías de la información) a la educación en todos los ámbitos del área de manufactura, cabe señalar lo estudiado por Babulak [44], quien hace una reseña del desarrollo de nuevas tecnologías basadas en Internet, aplicadas a entornos y máquinas de fabricación por CNC, y quien igualmente señala las tendencias futuras en este sentido (e-manufacturing), todas orientadas hacia niveles cada vez mayores de miniaturización, velocidad de procesamiento de datos y accesibilidad. De otra parte, Kraebber y Lehman [45] llevaron a cabo un estudio mediante encuestas para determinar todas las herramientas denominadas por los autores como tecnologías educativas, que están siendo empleadas en el campo de la formación en ingeniería y tecnología de manufactura. Las más establecidas corresponden a elementos tradicionales como los procesadores de texto, correo electrónico, diapositivas y gráficas de presentación. No obstante, reportan igualmente un uso cada vez más generalizado de tecnologías emergentes (software CAD, de planeación de operaciones, ERP y MRP, entre otros) y uso colaborativo de internet. También se indica que los educadores esperan mayores niveles de incentivo para aplicar con más intensidad este tipo de herramientas. Así mismo, en Malasia se ha explorado el efecto de potenciar la integración entre la industria y la educación en manufactura a través de la implementación de centros de
investigación y desarrollo virtual (Virtual I&D) [46]; de igual forma, en la universidad de Auckland, Nueva Zelanda [47] se ha indagado el fruto pedagógico que ofrece el diseño de una compañía virtual interactiva en la enseñanza de temas de manufactura avanzados (tales como justo a tiempo, lean manufacturing, teorías de colas y programación lineal, entre otros), cuyos resultados se reportaron como exitosos en el sentido de que incrementaron el nivel de interés de los estudiantes hacia dichos temas.
En este ámbito, se destaca el trabajo de M. Jou et al. [7,48] que se desarrolló bajo el objetivo de generar una plataforma para enseñar manufactura asistida por computador y planeación de procesos de manufactura, esta plataforma fue basada en sistemas e-learning con el fin de mejorar la calidad y disponibilidad de la educación tecnológica. En opinión del autor principal, los costosos recursos invertidos en tecnologías educativas se pueden hacer circular a través de la red con el fin de compartir recursos y ampliar la cobertura. Dicho sistema se implementó a nivel de la formación high-school y en pregrado universitario. El autor menciona que en comparación con los métodos tradicionales, este tipo de enseñanza tiene varias ventajas, entre ellas, que las actividades de aprendizaje no requieren de un momento y lugar específicos. Un desarrollo similar fue presentado por Borza et al [49], quienes describen varias herramientas como tutoriales y multimedia, que implican tecnologías de información y comunicación, además del trasfondo pedagógico tradicional (objetivos, conocimiento previo requerido por parte del estudiante, habilidades específicas a ser adquiridas al finalizar). Los autores describen las etapas de diseño e implementación de un curso on-line aplicado a la selección de herramientas de corte y en sus conclusiones indican que la estructuración de una arquitectura de e-learning puede responder de manera muy efectiva a las necesidades dinámicas de los estudiantes.
Es interesante en este contexto reseñar la herramienta de e-learning para embutido profundo diseñada por Ramírez et al. [50], hecha específicamente para educación a distancia, que si bien ha sido implementada únicamente en cursos de maestría (por el nivel de conocimiento requerido) se constituye en un indicativo metodológico que muestra los pasos a seguir, curricularmente y didácticamente hablando, para lograr el alcance de objetivos específicos de aprendizaje en manufactura. En particular es relevante la manera en que los autores integran diversas bases de datos con el fin de que el estudiante pueda llevar a cabo una selección óptima de parámetros de proceso.
En la misma línea de trabajo, Fang, Stewardson y Lubke [51] indican el resultado de aplicar siete simulaciones y aplicaciones de computador en experimentos reales, específicamente de procesos de maquinado, dentro del marco de un nuevo modelo de instrucciones para mejorar el aprendizaje a nivel cognitivo e incrementar los niveles de motivación en los estudiantes. Se describen los objetivos de aprendizaje que se pretenden alcanzar, así como el esquema del modelo, que parte de las lecturas de clase hacia el desarrollo de proyectos de curso a través de simulaciones en computador y laboratorios de manufactura con experimentos del mundo real. Se midió el impacto de este modelo mediante encuestas que en general, arrojaron resultados positivos en cuanto a la calidad de los programas desarrollados y su facilidad de uso. Finalmente el aprendizaje alcanzado se verificó a través de cuestionarios de selección múltiple.
Otra experiencia, reportada por Huang [52], es la integración de plataformas especiales en el diseño de laboratorios de manufactura automatizada con fines didácticos. Este tipo de plataformas está constituido por elementos tales como sistemas de manufactura flexibles, así como máquinas de control automático y numérico mediante tarjeta de memoria. Se describe el rol jugado por la incorporación de este tipo de tecnologías en el diseño curricular de un curso de manufactura para estudiantes de ingeniería mecatrónica. Un diseño centrado en la incorporación de este tipo de tecnología y enfocado en desarrollar tareas de aprendizaje basadas en proyectos, mostró que, a pesar de las dificultades presentadas, esta innovación muestra un alto grado de potencial para la formación.
En relación con el diseño de recursos didácticos TIC aplicados a la enseñanza de procesos de mecanizado, es muy interesante observar el desarrollo realizado en la Ecole Polytechnique de Montreal donde M. Balazinski y A. Przybylo adelantaron el diseño de una serie de 8 animaciones interactivas para apoyar la comprensión de varios conceptos complejos de procesos de maquinado [53]. Los autores encontraron que la introducción sucesiva de las animaciones interactivas en sus conferencias ha reducido considerablemente el tiempo necesario para explicar conceptos complejos de algunos procesos de fabricación. Así mismo, reportan que en una encuesta realizada a 27 de los estudiantes que han aprendido con las animaciones, estos afirman que son muy útiles en la comprensión de los conceptos involucrados.
 
CONCLUSIONES
El contexto en el cual se deben desempeñar los ingenieros del futuro, las tendencias económicas, la evolución tecnológica acelerada por las tecnologías de la información y los resultados en investigación pedagógica aplicada, determinan la necesidad de efectuar cambios a nivel curricular y didáctico para la enseñanza de las áreas relacionadas con ingeniería de manufactura. Se observa que, por lo general, varias reformas en la enseñanza implementadas actualmente a nivel mundial se sustentan en las dinámicas que afectan a la industria; en varios países, se han elaborado propuestas formativas que tienen en cuenta las condiciones continuamente cambiantes del entorno industrial, específicamente la globalización de los mercados, la virtualización de los servicios, los requerimientos de sostenibilidad y la necesidad apremiante de elevada competitividad. De manera que se recomienda, como punto de partida, analizar a profundidad la situación en la que se encuentran las industrias latinoamericanas y los requerimientos que surgen de esta situación, con el fin de formular nuevos objetivos y estrategias de enseñanza y aprendizaje para nuestras facultades y cursos de manufactura en ingeniería.
Con respecto a la enseñanza de la ingeniería en general, se observa cómo se han implementado metodologías estructuradas de diseño curricular en las cuales se definen objetivos específicos de aprendizaje, alineados con la evaluación del desempeño y con el diseño de actividades didácticas, teniendo en cuenta los estilos de aprendizaje de los jóvenes de hoy y la forma como se adquieren las habilidades fundamentales en ingeniería. En el contexto de los países latinoamericanos y del Caribe, es imperativo tomar acciones conducentes a diseñar estrategias pedagógicas y didácticas que conduzcan a la formación de los ingenieros de manufactura que con apremio requieren nuestras economías e industrias. Los métodos estructurados orientados al contexto de la ingeniería (por ejemplo, la iniciativa CDIO) representan una interesante alternativa para rediseñar los cursos de tal forma que involucren al estudiante con la aplicación de los conceptos teóricos en la práctica, y que aprovechen sus estilos y disposiciones particulares para aprender en un entorno de trabajo interdisciplinar y con un enfoque activo como el aprendizaje basado en proyectos o el aprendizaje cooperativo.
Adicionalmente, cabe destacar que los estudiantes de ingeniería de nuestros tiempos tienen características particulares de aprendizaje que difieren de aquellas con las cuales se formaron los ingenieros de la pasada era industrial. Así mismo, las ya mencionadas condiciones del entorno actual en el que se desempeñan los ingenieros requieren del desarrollo de nuevas habilidades y competencias, quizá ignoradas en otros tiempos, como el trabajo en equipo, la comunicación (que incide en la capacidad de gestión organizacional) y la implementación adecuada de tecnologías novedosas para llevar a buen término los proyectos. En consecuencia se manifiesta la necesidad de involucrar, de manera más directa, a los estudiantes que se están formando en ingeniería de manufactura con entornos reales de su ejercicio profesional futuro, preferentemente a través del desarrollo de proyectos en aula. En cuanto a la didáctica de la enseñanza en manufactura, resulta fundamental la incorporación de las nuevas herramientas y tecnologías que brindan interactividad y capacidad de simulación en tiempo real, para profundizar en la comprensión de la teoría y los efectos en la labor práctica, en términos de planeación y control de la producción, y también para lograr que el futuro ingeniero se familiarice con la incorporación en plantas, empresas y talleres de nuevos procedimientos basados en tecnologías que se actualizan a cada instante, contribuyendo de esta forma a la competitividad, sostenibilidad y flexibilidad.
Por último, se debe estar en la capacidad de medir adecuadamente el desempeño y verificar si las nuevas estrategias generaron el impacto deseado. Queda entonces la motivación abierta a los profesores-ingenieros para desarrollar trabajo fructífero en la enseñanza de las áreas relacionadas con la ingeniería de manufactura.
 
AGRADECIMIENTOS
Los autores expresan su agradecimiento a la Vicerectoría de Investigación de la Universidad Nacional de Colombia por la aprobación del proyecto "Innovación en procesos de Manufactura e Ingeniería de materiales IPMIM", con código 16008, a través del cual fue posible la realización de esta investigación.
 
REFERENCIAS
1. Rolstadås, A. y Moseng, B. "Global Education in Manufacturing - GEM". En: CIRP International Manufacturing Education Conference CIMEC, Enschede: Holanda, 2002, p. 1-13. [Consultado el: 19 de marzo de 2012]. Disponible en http://www.sintef.no/static/tl/projects/gem/documents/CIMEC%20%20April%202002%20GEM%20IMS.pdf
2. Jovane, F., Westkämper, E. y Williams, D. The ManuFuture road: towards competitive and sustainable high-adding-value manufacturing. Berlín: Springer, 2009. p. 89-90. 261 p. ISBN 978-3-540-77011-4.
3. de Treville, S., Bendahan, S. y Vanderhaeghe, A. "Manufacturing flexibility and performance: bridging the gap between theory and practice". International Journal of Flexible Manufacturing Systems. 2007. vol 19, nº. 4, p. 334-357. ISSN 0920-6299. DOI 10.1007/s10696-008-9040-1.
4. Rolstadås, A. "Global education in manufacturing". En: Advanced Manufacturing - An ICT and Systems Perspective. Boca Raton, Florida: Taylor & Francis, 2007. 319 p. p. 229-239. ISBN 978-0-415-42912-2.
5. O'Sullivan, D.; Rolstadås, A. y Filos, E. "Global education in manufacturing strategy". Journal of Intelligent Manufacturing. 2011. vol 22, nº. 5, p. 663-674. ISSN 0956-5515. DOI 10.1007/s10845-009-0326-2.
6. Waldorf, D. y Bjurman, R. "Plotting a Bright Future for Manufacturing Education: Results of a Brainstorming Session". En: Proceedings of the 2006 ASEE Conference Advancing Scholarship in Engineering Education. Chicago, 2006. [Consultado el: 13 de octubre de 2011]. Disponible en: http://digitalcommons.calpoly.edu/ime_fac/4/. DOI 10.1.1.123.8254.
7. Jou, M., Zhang, H. W. y Lin, C. W. "Development of an interactive e-learning system to improve manufacturing technology education". En: ICALT 2005 Fifth IEEE International Conference on Advanced Learning Technologies. Washington, 2005, p. 359-360. [Consultado el: 30 de mayo de 2011]. Disponible en: http://www.computer.org/csdl/proceedings/icalt/2005/2338/00/23380359 -abs.html. DOI 10.1109/ICALT.2005.121.
8. Gil, R. La ingeniería en el 3er milenio: una reseña de los nuevos paradigmas. Buenos Aires, Argentina: ANI-Academia Nacional de Ingeniería; 2010. 442 p.
9. Villarroel, C. y Herrera, C. "Sobre la posibilidad de aplicar la metodología orientada al proyecto, en la enseñanza de la ingeniería de la Universidad de Tarapacá-Chile". Revista de Facultad de Ingeniería U.T.A. 2004. vol 12, nº. 2, p. 74-83. [Consultado el: 11 de febrero de 2012]. Disponible en: http://www.scielo.cl/pdf/rfacing/v12n2/art10.pdf. ISSN 0717-1072.
10. Pérez Rodríguez, R., Quesada Estrada, A. M., Hernández González, L. W. et al. "KinMTool: Una Herramienta Multimedia para la enseñanza de máquinas herramienta". Ciencias Holguín. 2008. vol XIV, p. 1-11. [Consultado el: 11 de febrero de 2012]. Disponible en: http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=181517958009. ISSN 1027-2127.
11. Rodríguez Arroyave, C. A. y Ramírez Echeverri, S. "Modelo de cursos interactivos para ingeniería con apoyo de una plataforma bimodal". Revista Universidad EAFIT. 2007. vol 43, nº. 146, p. 33-46. [Consultado el: 11 de febrero de 2012]. Disponible en: http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=21514604. ISSN 0120-341X.
12. González Rey, G.; García Toll, A., Wellesley-Bourke Funcasta, J. et al. "El proyecto de curso en la formación de competencias profesionales en estudiantes de ingeniería mecánica". Ingeniería Mecánica. 2011. vol 14, nº. 2, p. 119-128. [Consultado el: 11 de febrero de 2012]. Disponible en: http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=225117950004. ISSN 1815-5944.
13. de Moura Castro, C. y Verdisco, A. E. Cómo Mejorar la Educación: Ideas Latinoamericanas y Resultados Asiáticos. Washington, DC, USA: Inter-American Development Bank. 2004. 232 p. [Consultado el: 11 de febrero de 2012]. Disponible en: http://www.iadb.org/document.cfm?id=419946. ISBN 193100370X
14. Youssef, H. y El-Hofy, H. Machining technology: machine tools and operations. Boca Raton, Florida: CRC Press; 2008, p. 1. 672 p. ISBN 978-1-4200-4339-6.
15. Byung-Wook, C. "Growth Engines and Key Technologies for Manufacturing Innovation: An IMS Perspective". En: International Conference on Smart Manufacturing Application, ICSMA 2008. Gyeonggi-do: Korea. 2008. p. 48 - 52. ISBN 978-89-962150-0-4.

16. Crawley, E., Brodeur, D. y Soderholm, D. "The Education of Future Aeronautical Engineers: Conceiving, Designing, Implementing and Operating". Journal of Science Education and Technology. 2008. vol 17, nº. 2, p.138-151. [Consultado el: 11 de febrero de 2012]. Disponible en: http://www.icas.org/ICAS_ARCHIVE_CD1998-2010/ICAS2006/PAPERS/804.PDF. ISSN-1059-0145. DOI 10.1007/s10956-008-9088-4.
17. Bengu, G. y Swart, W. "A computer-aided, total quality approach to manufacturing education in engineering". IEEE Transactions on Education. 1996. vol 39, nº. 3, p. 415-422. ISSN 00189359. DOI 10.1109/13.538767.
18. Fenster, S. "Why Aren't Colleges and Universities Preparing the Workforce of Tomorrow?". University Business, 2005, vol 8, nº 4, p. 100. [Consultado el: 11 de febrero de 2012]. Disponible en: http://findarticles.com/p/articles/mi_m0LSH/is_4_8/ai_n13609762/.
19. ElMaraghy, W. y ElMaraghy, H. "Manufacturing Research and Education Curricula Driven by Industry/Student Needs". En: Proceedings of the 1998 International Conference on Education in Manufacturing, Manufacturing Education for the 21st Century, Michigan, USA. 1998, p. 3 - 8.
20. Stephan, K. y Vedaraman, S. "Globalizing manufacturing engineering education". Technology and Society Magazine, IEEE. 2005, vol 24, nº. 3, p.16-22. ISSN 0278-0097. DOI 10.1109/MTAS.2005.1507536.
21. Hunt, I., O'Sullivan, D., Rolstadas, A., et al. "Survey of manufacturing curricula from around the world". Production Planning & Control. 2004, vol 15, nº. 1, p. 71-79. [Consultado el: 11 de febrero de 2012]. Disponible en: http://www.cetim.org/projects/408/ICE2003/Training%20and%20Education/66_precup_horan_hunt_osullivan.pdf. ISSN 0953-7287. DOI 10.1080/09537280410001662583.
22. de Simone, J. A. "Papel de la educación técnico-profesional en el mejoramiento de las capacidades de los trabajadores del sector moderno ante los procesos económicos actuales y los nuevos desarrollos tecnológicos". Revista Iberoamericana de Educación. 1993, nº. 2. [Consultado el: 13 de octubre de 2011]. Disponible en: http://www.rieoei.org/oeivirt/rie02a04.htm. ISSN 1681-5653-8.
23. Vessuri, H. M. C. "Desafíos de la educación superior en relación con la formación y la investigación ante los procesos económicos actuales y los nuevos desarrollos tecnológicos". Revista Iberoamericana de Educación. 1993, nº. 2. [Consultado el: 13 de octubre de 2011]. Disponible en: http://www.oei.es/salactsi/vessuri.htm. ISSN 1681-5653-8.
24. Peters, J. "Manufacturing in Mechanical Engineering Education in Developing Countries". European Journal of Engineering Education. 1989, vol 14, nº. 2, p. 135-139. ISSN 1069-4730. DOI 10.1080/03043798908903347.
25. Felder, R. y Silverman, L. "Learning and Teaching Styles in Engineering Education". Engineering Education. 1988, vol 78, nº. 7, p. 674-681. [Consultado el: 13 de octubre de 2011]. Disponible en: http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/LS-1988.pdf. ISSN 0949-149X.
26. Mills, J. y Treagust, D. "Engineering Education: is problem-based or project-based learning the answer?". Australasian Journal of Engineering Education. 2003. vol 11, nº. 1, p. 2-16. [Consultado el: 13 de octubre de 2011]. Disponible en: http://www.aaee.com.au/journal/2003/mills_treagust03.pdf. ISSN 1324-5821.
27. Scott, D. Critical essays on major curriculum theorists. New York: Routledge, 2008. 176 p. ISBN 978-0-415-33984-1
28. Felder, R. y Brent, R. "Designing and Teaching Courses to Satisfy the ABET Engineering Criteria". Journal of Engineering Education. 2003, vol 92, nº. 1, p. 7-25. [Consultado el: 13 de octubre de 2011]. Disponible en: http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers /ABET_Paper_(JEE).pdf. ISSN 1069-4730.
29. Todd, R., Red, W. E., Magleby, S., et al. "Manufacturing: A Strategic Opportunity for Engineering Education". Journal of Engineering Education. 2001, vol 90, nº. 3, p. 397-405. [Consultado el: 13 de octubre de 2011]. Disponible en: http://jee.org/2001/july/399.pdf. ISSN 1069-4730
30. Waldorf, D.; Macedo, J. y Colvin, K. "Machine vision course for manufacturing engineering undergraduate students". Journal of Manufacturing Systems. 2005, vol 24, nº. 3, p. 256-265. ISSN 0278-6125. DOI 10.1016/S0278-6125(06)80016-6
31. Jiang, S. y Qi, X. "Exploration of Enhancing Students' Professional Ability and Innovation Ability with Manufacturing Knowledge". Energy Procedia. 2011, vol 13, p. 2432-2437. ISSN 1876-6102. DOI 10.1016/j.egypro.2011.11.350.
32. Lee, S. y Hung, W. "Manufacturing engineering education in Singapore". Journal of Manufacturing Systems. 2005, vol 24, nº. 3, p. 271-276. [Consultado el: 30 de mayo de 2011]. Disponible en: http://portal.jnu.edu.cn/publish/uploadFile/2970/eWebEditor /20100707013926905.pdf. ISSN 0278-6125. DOI 10.1016/j.bbr.2011.03.031.
33. Crawley, E.; Malmqvist, J., Östlund, S., et al. Rethinking engineering education: the CDIO approach. Berlín: Springer; 2007. 300 p. ISBN 978-0-387-38287-6.
34. Lino, F. J. y Duarte, T. P. "Research Skills Enhancement in Future Mechanical Engineers". International Journal of Engineering Pedagogy. 2005, vol 1, nº. 1, p. 20-26. [Consultado el: 13 de octubre de 2011]. Disponible en: http://paginas.fe.up.pt/~falves/1700.pdf. ISSN 2192-4880. DOI 10.1109/EDUCON.2011.5773283.
35. Liang, Z., Deng, H. y Tao, J. "Teaching Examples and Pedagogy of Mechanical Manufacture based on the CDIO-Based Teaching Method". Procedia Engineering. 2011, vol 15, p. 4084-4088. ISSN 1877-7058. DOI 10.1016/j.proeng.2011.08.766.
36. Ssemakula, M. "A hands-on approach to teaching manufacturing processes". En: Frontiers in Education Conference. Reno, Nevada, USA. 2001, vol 1, p. TIC-10-14. [Consultado el: 30 de mayo de 2011]. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.4609&rep=rep1&type=pdf. DOI 10.1109/FIE.2001.963841.
37. Chowdhury, A. y Mazid, A. "Computer Integrated Manufacturing education to Mechanical Engineering students: Teaching, research and practice". En: IEEE International Conference on Industrial Technology, ICIT 2009, Gippsland, Victoria, p. 1-5. DOI 10.1109/ICIT.2009.4939736.
38. Fisher, D. y Hofmann, R. "CNC machining plastic injection mold plates in the classroom". En: 37th ASEE/IEEE Frontiers in Education Conference, Milwaukee. 2007, p. S2A-12-S2A-17. [Consultado el: 11 de febrero de 2012]. Disponible en: http://fie-conference.org/fie2007/papers/1160.pdf. DOI 10.1109/FIE.2007.4417886.
39. Fang, N. "A Project-Based Active and Cooperative Learning Approach to Improving Manufacturing Engineering Education" METEC Online Clearinghouse Database. ASEE Annual Conference & Exposition, 2009. [Consultado el: 11 de febrero de 2012]. Disponible en: http://www.meteconline.org/view_abstract.php?id=1936&class_type=0.
40. Miller, F., Vandome, A. y McBrewster, J. Likert Scale. Saarbrücken, Alemania: VDM Verlag Dr. Mueller e.K, 2010. 84 p. ISBN 978-6-1327-8860-3.
41. Ary, D., Jacobs, L., Razavieh, A. et al. Introduction to Research in Education. 8 ed. Wadsworth: Cengage Learning, 2009, p. 209-212. 669 p. ISBN 978-0-495-60122-7.
42. Zhou, Z. y Donaldson, A. "Work in progress-Project-based learning in manufacturing process". En: IEEE Frontiers in Education Conference [FIE], Washington. 2010. [Consultado el: 30 de mayo de 2011]. Disponible en: http://fie-conference.org/fie2010/papers/1410.pdf. DOI 10.1109/FIE.2010.5673659.
43. Pereira, D., del Rio Vilas, D., Rego Monteil, N. et al. "A project-based teaching experience for simulation and optimization education". En: 7th International Conference on Next Generation Web Services Practices [NWeSP]. 2011, p. 436-440. DOI 10.1109/NWeSP.2011.6088219.
44. Babulak, E. "Invited Paper: Next Generation of Applied Internet Technologies in E-manufacturing". En: UKSIM '09 11th International Conference on Computer Modelling and Simulation. Cambridge, 2009, p 386-390. DOI 10.1109/UKSIM.2009.86.
45. Kraebber, H. y Lehman, J. "Use of educational technology in manufacturing engineering and technology education". En: 39th ASEE/IEEE Frontiers in Education Conference. San Antonio, Texas, 2009, p. 1-6. [Consultado el: 11 de febrero de 2012]. Disponible en: http://fie2012.org/sites/fie2012.org/history/fie2009/papers/1178.pdf. DOI 10.1109/FIE.2009.5350617.
46. Ebrahim, N. A., Ahmed, S., Rashid S, H. et al. "Virtual R&D teams: A potential growth of education-industry collaboration". En: 2nd International Congress on Engineering Education (ICEED 2010). Kuala Lumpur. 2010. [Consultado el: 11 de febrero de 2012]. Disponible en: http://mpra.ub.uni-muenchen.de/27414/2/A_potential_growth_of_education -industry_collaboration.pdf. DOI 10.1109/ICEED.2010.5940754.
47. McCarthy, M. "Effective teaching of complex manufacturing topics to undergraduate engineers utilizing a novel, broadly based, interactive virtual company". En: 117th ASEE Annual Conference & Exposition. Louisville, Kentucky, 2010. [Consultado el: 13 de octubre de 2011]. Disponible en: https://researchspace.auckland.ac.nz/handle/2292/16517.
48. Liu, C. C. y Jou, M. "Development of an e-learning system for manufacturing technology education". International Journal of Knowledge and Learning. 2008, vol 4, núm. 4, p. 370-382. ISSN 1741-1009. DOI 10.1504/IJKL.2008.022057.
49. Borza S-I.; Brindasu, P. D. y Beju, L. D. Modern Methods of Education, Research and Design Used in Mechanical Engineering. Croatia: Intechopen; 2012. 681 p. [Consultado el: 11 de febrero de 2012]. Disponible en: http://www.intechopen.com/download/pdf/35279. ISBN 978-953-51-0505-3.
50. Ramirez, F. J., Domingo, R. y Sebastian, M. Á. "Deep drawing tool for e-learning: A didactic approach for manufacturing engineering education". En: IEEE EDUCON Education Engineering 2010-The Future of Global Learning Engineering Education. Madrid, 2010. p. 1857-1866. DOI 10.1109/EDUCON.2010.5492429.
51. Fang, N., Stewardson, G. y Lubke, M. "Work in progress - An innovative instructional model for improving manufacturing engineering education". En: 37th ASEE/IEEE Frontiers in Education Conference. Milwaukee. 2007, p. S4D-19 - S4D-20. [Consultado el: 30 de mayo de 2011]. Disponible en: http://www.fie-conference.org/fie2007/papers/1232.pdf. DOI 10.1109/FIE.2007.4417932.
52. Huang, X. "A mechatronics educational laboratory platform for manufacturing automation based on Googol FMS". En: 2011 International Conference on Electronic and Mechanical Engineering and Information Technology [EMEIT]. Heilongjiang, China. 2011, p. 389-392. DOI 10.1109/EMEIT.2011.6022959.
53. Balazinski, M. y Przybylo, A. "Teaching manufacturing processes using computer animation". Journal of Manufacturing Systems. 2005, vol 24, nº. 3, p. 237-243. ISSN 0278-6125. DOI 10.1016/S0278-6125(06)80013-0.
 
 
Recibido: 16 de junio de 2012.
Aceptado: 25 de octubre de 2012.

 
 
Juan David Orjuela-Méndez. Universidad Nacional de Colombia. Facultad de Ingeniería-Sede Bogotá. Bogotá. Colombia.
Correo electrónico: jdorjuelam@unal.edu.co


Ingeniería Mecánica - Actualidad y perspectivas en la enseñanza del área de manufactura a estudiantes de ingeniería

The best selection of "Virtual R&D Teams" publications

$
0
0

Nader Ale Ebrahim discuss about Virtual Teams and its application in New Product Development, R&D and Small and Medium Enterprises (SMEs).
"Virtual teams will became as important as Web to companies" (Nader Ale Ebrahim)”

A comprehensive definition of virtual teams may be taken as: small temporary groups of geographically, organizationally and/or time dispersed knowledge workers who coordinate their work, predominantly with electronic information and communication technologies in order to accomplish one or more organization tasks (Ale Ebrahim et al., 2009). Nowadays, this definition have gained popularity as found in Wikipedia (wikipedia, 2011). Virtual R&D team is a kind of virtual team that concentrate on the R&D tasks and projects (Ale Ebrahim et al., 2011).
Begin reading now!Table of Contents

The best selection of "Virtual R&D Teams" publications

The best selection of "Virtual R&D Teams" publications: Virtual R&D Teams Definition

$
0
0

Virtual R&D Teams Definition

Virtual R&D Teams Definition
The literature related to virtual R&D teams reveals a lack of depth in the definitions (Ale Ebrahim et al., 2010). Although virtual teamwork is a current topic in the literature concerning global organizations, it is problematic to define the meaning of 'virtual teams' across multiple institutional contexts (Chudoba et al., 2005). The concept of a "team" is described as a small number of people with complementary skills who are equally committed to a common purpose, goal, and working approach for which they hold themselves mutually accountable (Zenun et al., 2007). It is worth mentioning that virtual teams (VTs) are often formed to overcome geographical or temporal separations (Cascio and Shurygailo, 2003). VTs work across boundaries of time and space using modern computer-driven technologies (Ebrahim et al., 2010). The term "VTs" is used to cover a wide range of activities and forms of technology-supported working (Anderson et al., 2007). Gassmann and Von Zedtwitz (2003) defined "virtual team as a group of people and sub-teams who interact through interdependent tasks guided by common purpose and work across links strengthened by information, communication, and transport technologies". Another definition suggests that virtual teams, are distributed work teams whose members are geographically dispersed and coordinate their work, predominantly with electronic information and communication technologies (e-mail, video conferencing, telephone, etc.) (Hertel et al., 2005). From the perspective of Leenders et al. (2003), VTs are groups of individuals collaborating in the execution of a specific project while geographically and often temporally distributed, possibly anywhere within (and beyond) their parent organization. Among the different definitions for virtual teams the following form is one of the most widely accepted definition: ''VTs as groups of geographically, organizationally and/or time dispersed workers brought together by information technologies to accomplish one or more organization tasks''(Powell et al., 2004).
Therefore, a comprehensive definition of virtual teams may be taken as: small temporary groups of geographically, organizationally and/or time dispersed knowledge workers who coordinate their work, predominantly with electronic information and communication technologies in order to accomplish one or more organization tasks (Ale Ebrahim et al., 2009). Nowadays, this definition have gained popularity as found in Wikipedia (wikipedia, 2011). Virtual R&D team is a kind of virtual team that concentrate on the R&D tasks and projects (Ale Ebrahim et al., 2011).
References:
ALE EBRAHIM, N., ABDUL RASHID, S. H., AHMED, S. & TAHA, Z. 2011. The Effectiveness of Virtual R&D Teams in SMEs: Experiences of Malaysian SMEs. Industrial Engineering and Management Systems, 10, 109-114.

ALE EBRAHIM, N., AHMED, S. & TAHA, Z. 2009. Virtual R & D teams in small and medium enterprises: A literature review. Scientific Research and Essay, 4, 1575-1590.

ALE EBRAHIM, N., AHMED, S. & TAHA, Z. Year. Benefits and Pitfalls of Virtual R&D Teams: An Empirical Study. In: 6th International Communication & Information Technology Management Conference (ICTM 2010) February. 23-24 2010 Tehran, Iran. 1-5.
ANDERSON, A. H., MCEWAN, R., BAL, J. & CARLETTA, J. 2007. Virtual team meetings: An analysis of communication and context. Computers in Human Behavior, 23, 2558-2580.

CASCIO, W. F. & SHURYGAILO, S. 2003. E-Leadership and Virtual Teams. Organizational Dynamics, 31, 362-376.

CHUDOBA, K. M., WYNN, E., LU, M., WATSON-MANHEIM & BETH, M. 2005. How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 15, 279-306.

EBRAHIM, N. A., AHMED, S. & TAHA, Z. 2010. Virtual R&D teams and SMEs growth: A comparative study between Iranian and Malaysian SMEs. African Journal of Business Management, 4, 2368-2379.

GASSMANN, O. & VON ZEDTWITZ, M. 2003. Trends and determinants of managing virtual R&D teams. R&D Management, 33, 243-262.

HERTEL, G. T., GEISTER, S. & KONRADT, U. 2005. Managing virtual teams: A review of current empirical research. Human Resource Management Review, 15, 69-95.

LEENDERS, R. T. A. J., ENGELEN, J. M. L. V. & KRATZER, J. 2003. Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20, 69-92.

POWELL, A., PICCOLI, G. & IVES, B. 2004. Virtual teams: a review of current literature and directions for future research. The Data base for Advances in Information Systems, 35, 6-36.

WIKIPEDIA. 2011. Virtual team. Available: http://en.wikipedia.org/wiki/Virtual_team [Accessed 10 August].

ZENUN, M. M. N., LOUREIRO, G. & ARAUJO, C. S. 2007. The Effects of Teams' Co-location on Project Performance. In: LOUREIRO, G. & CURRAN, R. (eds.) Complex Systems Concurrent Engineering-Collaboration, Technology Innovation and Sustainability. London: Springer.

The best selection of "Virtual R&D Teams" publications: Virtual R&D Teams Definition

The best selection of "Virtual R&D Teams" publications: EFFECTIVE VIRTUAL TEAMS FOR NEW PRODUCT DEVELOPMENT

$
0
0

EFFECTIVE VIRTUAL TEAMS FOR NEW PRODUCT DEVELOPMENT

Effective Virtual Teams for New Product Development
Cite: Ale Ebrahim, N., Ahmed, S., Abdul Rashid, S. H., & Taha, Z. (2012). Effective Virtual Teams for New Product Development. [Full Length Research Paper]. Scientific Research and Essay, 7(21), 1971-1985.

Abstract:
Literature shows the factors that impact on the effectiveness of virtual teams for new product development, are still ambiguous. To address this problem, we developed a research design that included a literature review, a preliminary model and field survey. The literature identified factors which impact on the effectiveness of virtual teams. These factors were then modified by a field survey. We explore the relationship between knowledge worker (people), process and technology in virtual teams. The results of the study suggest that technology and process are tightly correlated and need to be considered early in virtual teams. Software as a service, web solution, report generator and tracking system in effective virtual teams should consider for leading such a new phenomena.

Keywords
Virtual teams; Collaboration; Questionnaires; Communication; Information; Integration; Performance; Success; Cross-Functional Teams; Product Development;

1           INTRODUCTION

Nowadays, a virtual team allows work to be carried out over computer networks and reduces the need for teams to be collocated. Virtual teams are defined as “small temporary groups of geographically, organizationally and/or time dispersed knowledge workers who coordinate their work, mainly with electronic information and communication technologies to carry out one or more organization tasks” (Ale Ebrahim et al., 2009b). We are becoming more virtual all the time!” is heard in many global corporations today (Chudoba et al., 2005). On the other hand, new product development (NPD) is widely recognized as a key to corporate prosperity (Lam et al., 2007). Different products may need different processes. A new product idea needs to be conceived, selected, developed, tested and launched to the market (Martinez-Sanchez et al., 2006). The specialized skills and talents required for the development of new products often reside (and develop) locally in pockets of excellence around the company or even around the world. Firms, therefore, have no choice but to disperse their new product units to access such dispersed knowledge and skills (Kratzer et al., 2005). As a result, firms are finding that internal development of all technology needed for new products and processes are difficult or impossible. They must increasingly receive technology from external sources (Stock and Tatikonda, 2004).
Virtualization in NPD has recently started to make serious headway due to developments in technology - virtuality in NPD which is now technically possible (Leenders et al., 2003). As product development becomes the more complex, supply chain also have to collaborate more closely than in the past. These kinds of collaborations almost always involve individuals from different locations, so virtual team working supported by information technology (IT), offers notable potential benefits (Anderson et al., 2007). Although the use of the internet in NPD has received notable attention in the literature, little is written about collaborative tool and effective virtual teams for NPD (Ale Ebrahim et al., 2009a).
This paper is structured as follows. First, the motivation for the study is initially described. Next, we draw on prior research to derive the items that comprise the effectiveness of virtual teams. Then we present our methods and results of our analyses. The paper infers with a discussion and future guidelines.

2           WHAT IS NEED FOR EFFECTIVE VIRTUAL TEAM?

A review of the literature shows the factors that influence the effectiveness of virtual teams are still ambiguous (Ale Ebrahim et al., 2009d). Most of the accepted challenges of an effective virtual team working, focus on ensuring good communication among all members of the distributed team (Anderson et al., 2007). For example, Jarvenpaa and Leidner (1999) found that regular and timely communication feedback was a key to building trust and commitment in distributed teams. A study by Lin et al. (2008) suggests that social dimensional factors need to be considered early in the virtual team creation process and are critical to the effectiveness of the team. Communication is a tool that directly influences the social dimensions of the team and in addition performing the team has a positive impact on satisfaction with the virtual team.
For teams moving from co-location to virtual environments, an ability to adapt and change can be a long process riddled with trial and error scenarios. This process is seen as necessary to encourage effective virtual teams (Kirkman et al., 2002). Despite weak ties between virtual team members, ensuring lateral communication may be adequate for effective virtual team performance. In terms of implementation, lateral communication in both virtual context and composition teams can be increased by reducing the hierarchical structure of the team (i.e. a flatter reporting structure and/or decentralization) and the use of enabling computer-mediated communication tools (Wong and Burton, 2000).
Malhotra and Majchrzak’s (2004) study of 54 effective virtual teams found that creating a state of shared understanding about goals and objectives, task requirements and interdependencies, roles and responsibilities, and member expertise had a positive effect on output quality. As criteria, effectiveness ratings were Hertel et al. (2005) collected from the team managers both at the individual and at the team level. The results of the field study showed good reliability of the task work-related attributes, teamwork-related attributes, and attributes related to tele-cooperative work.

Shachaf and Hara (2005) suggest four dimensions of effective virtual team leadership:
  1. Communication (the leader provides continuous feedback, engages in regular and prompt communication, and clarifies tasks);
  2. Understanding (the leader is sensitive to schedules of members, appreciates their opinions and suggestions, cares about member’s problems, gets to know them, and expresses a personal interest in them);
  3. Role clarity (the leader clearly defines responsibilities of all members, exercises authority, and mentors virtual team members); and
  4. Leadership attitude (the leader is assertive yet not too “bossy,” caring, relates to members at their own levels, and upholds a consistent attitude over the life of the project).

Bal et al.  (2001b, 1999) by observation and interview identified 12 elements for effective virtual team working. As illustrated in Figure 1. The Bal and Gundry (2001b, 1999) model are used as the basic framework in this paper.


Figure 1 Model for effective virtual team working (Source (Bal and Gundry, 1999))

2.1         Virtual team working: technology point of view

2.1.1        Selection:

Simple transmission of information from a point A to a point B is not enough; the virtual environment presents significant challenges to effective communication (Walvoord et al., 2008). Being equipped with even the most advanced technologies is not adequate to make a virtual team effective, since the internal group dynamics and external support mechanisms must also be present for a team to succeed in the virtual world (Lurey and Raisinghani, 2001). Information richness seemed to be the most important criterion for technology selection; and the greatest impediment to the effectiveness of virtual teams was the implementation of technology (Mikkola et al., 2005). Virtual teams are technology-mediated groups of people from different discipline that work on common tasks (Dekker et al., 2008). So the way the technology is implemented seems to make the virtual team outcome more or less likely (Anderson et al., 2007). Table 1 matrix assists the virtual team facilitator in choosing the suitable technology based upon the purpose of the meeting.
Table 1 Tools for virtual teams ( Adopted from Thissen et al. (2007))
Tool
Examples
Uses and Advantages
Immediacy
Sensory Modes
Instant Messaging and
Chat
• Yahoo Messenger
• MSN Messenger
• AOL Instant Messenger
• Skype
• Instant interaction
• Less intrusive than a phone call
• View who is available
• Low cost
• Low setup effort
• Synchronous or asynchronous
• Visual
• Text and limited
graphics
Groupware /
Shared Services
• Lotus Notes
• Microsoft Exchange
• Novell Groupwise
• Calendars
• Contact Lists
• Arrange meetings
• Cost and setup effort vary
• Asynchronous
• Visual
Remote Access and Control
• NetMeeting
• WebEx
• Remote Desktop
• pcAnywhere
• User controls a PC without being on-site
• Cost varies
• Setup varies
• Synchronous
• Visual
• Audio
• Tactile
Web Conferencing
• NetMeeting
• WebEx
• Meeting Space
• GoToMeeting
• Live audio
• Dynamic video
• Whiteboard
• Application sharing
• Moderate cost and setup effort
• Synchronous
• Visual
• Unlimited graphics
• Optional audio
File Transfer
• File Transfer Protocol (FTP)
• Collaborative Websites
• Intranets
• Share files of any type
• Cost varies
• Moderate setup effort
• Asynchronous
• Varies with file
content
Email
• Many vendors and • free applications
• Send messages or files
• Cost and setup effort vary
• Asynchronous
• Visual
• Audio in attached
files
Telephone
• “Plain Old Telephone Service” (POTS)
• Voice Over Internet Protocol (VOIP)
• Direct calls
• Conference calls
• Cost varies
• Low setup effort
• Synchronous
• Asynchronous for voice mail
• Audio

2.1.2        Location:

Virtual team allowed organizations to access the most qualified individuals for a particular job regardless of their location and provide greater flexibility to individuals working from home or on the road (Bell and Kozlowski, 2002). Table 2 shows the relationship between tool, time and space in virtual teams.

2.1.3        Training:

Suggestions for the training of remote managers and virtual team development can be found in (Hertel et al., 2005). The results of Anderson et al. (2007) systematic lab study confirmed many of the observations, including explicit preparation and training for virtual teams as a way of working collaboratively. Fuller et al., (2006) indicated that in the case of computer collective efficacy, computer training related to more advanced skills sets may be useful in building virtual team efficacy. Hertel et al. (2005)suggested that training led to increased cohesiveness and team satisfaction.
Table 2 Time /Space matrix (Adapted from Bouchard and Cassivi (2004))

Same space
Different space
Same time
Synchronous
Face-to-face meeting, Brainstorming,
Vote, PC and projector Electronic white
board, GDSS, Chat
Chat, Tele-conference, Video-conference,
Liaison satellite, Audio-conference, Shared white
board, Shared application
Different time
Asynchronous
Team room, Document management
system, Discussion forum, E-mail,
Workflow, Project management
E-mail, Workflow, Document sharing ,
Discussion forum, Group agenda Cooperative
hypertext and organizational memory, Version
control Meeting scheduler

2.1.4        Security:

Virtual team working to involve exchange and manipulation of sensitive information and data through the Internet therefore, security is always an important issue of concern (Bal and Teo, 2001b). Team leaders should identify the special technological and security level needs of the virtual team and their team members (Hunsaker and Hunsaker, 2008).

2.2         Virtual team working: people point of view

2.2.1        Team selection:

One of the key factors which distinguish successful teams from unsuccessful ones, is team selection (Ale Ebrahim et al., 2009d). Virtual teams can be designed to include the people most suited for a particular project (Bell and Kozlowski, 2002). Besides making sure that the project is clearly defined, outcome priorities and a supportive team climate are established. Virtual team needs to select members with the necessary skills (Hunsaker and Hunsaker, 2008). Selection of virtual team members is particularly difficult because of the geographical and organizational separation involved (Bal and Gundry, 1999).

2.2.2        Reward structure:

Developing a fair and motivating reward system is another important issue at the beginning of virtual teamwork (Bal and Teo, 2001a, Hertel et al., 2005). Virtual team performance must be recognized and rewarded (Bal and Gundry, 1999). Lurey and Raisinghani (2001) in a survey in an effort to determine the factors that contribute to the success of a virtual team, found that reward  systems ranked strongly among the external support mechanisms for virtual teams.

2.2.3        Meeting training:

Comparing teams with little and extensive training, Bal and Gundry (1999) remarked a significant drop in performance as both teams went live using the system. However, the latter then improved its performance at a faster rate than the former. Training is a key aspect that cannot be neglected in team building. Virtual team members need different types of training compared to ordinary teams. The training includes self-managing skills, communication and meeting training, project management skills, technology training, etc. (Bal and Teo, 2001b).

2.2.4        Specify an objective:

While direct leadership strategies are possible in conventional teams, members of virtual teams might be managed more effectively by empowerment and by delegating managerial functions to the members (Hertel et al., 2005). Such an approach changes the role of a team manager from traditional controlling into more coaching and moderating functions (Kayworth and Leidner, 2002). Virtual team leaders should identify commonalities among members early on, while focusing the team on achieving key performance objectives (Ale Ebrahim et al., 2009d).

2.3         Virtual team working: process point of view

2.3.1        Alignment:

The company’s processes need to be re-aligned with the capabilities of virtual teams contrary to face-to-face teams. This involves an understanding of the virtual team processes and the existing processes (Bal and Gundry, 1999). However, the key elements in knowledge sharing are not only the hardware and software, but also the ability and willingness of team members to actively participate in the knowledge sharing process (Rosen et al., 2007).

2.3.2        Meeting structure:

Proximity enables team members to engage in informal work (Furst et al., 2004). Virtual team members are more likely to treat one another formally, and less likely to reciprocate requests from one another (Wong and Burton, 2000). Shin (2005) argued that lack of physical interactions and informal relationships decrease the cohesiveness of virtual teams. Formal practices and routines designed to formally structure the task, was reported to lead to higher quality output of virtual teams (Massey et al., 2003). The physical absence of a formal leader exacerbates the lack of extrinsic motivation (Kayworth and Leidner, 2002). In virtual teams that rarely meet face-to-face, team leaders often have no choice but to impose a formal team structure. Synchronous written documents helped virtual teams overcome challenges associated with spoken language, and this enabled teams to overcome challenges associated with asynchronous and lean written communication (Shachaf, 2008).

2.3.3        Performance measurement:

Kirkman and Rosen, et al. (2004) study on performing virtual teams, shows a positive correlation between empowerment and virtual team performance. High-performance teams are differentiated by passionate dedication to goals, emotional bonding among team members and identification, and a balance between unity and respect for individual differences (Ale Ebrahim et al., 2009d).

2.3.4        Team facilitation:

Team members must have crystal clear rules and responsibilities. The rule should be accountable and visible. Virtual team members may feel less accountable for results under lack of visibility circumstances. Therefore, explicit facilitation of a virtual team takes on heightened importance for team working. Temporal coordination mechanisms such as scheduling deadlines and coordinating the pace of effort are recommended to increase vigilance and accountability (Massey et al., 2003).

3           NEW PRODUCT DEVELOPMENT AND VIRTUALITY

Product development is defined by different researchers is slightly different ways, but generally it is the process that covers product design, production system design and product introduction processes and start of production (Johansen, 2005). New product development (NPD) has long been recognized as one of the corporate core functions (Huang et al., 2004). The rate of market and technological changes has accelerated in the past years and this turbulent environment needs new methods and techniques to bring successful new products to the marketplace (González and Palacios, 2002). Particularly, for companies with short product life cycles, it is important to quickly and safely develop new products and new product platforms that fulfill reasonable demands on quality, performance, and cost (Ottosson, 2004). The world market requires short product development times (Starbek and Grum, 2002). Therefore, in order to successfully and efficiently get all the experience needed in developing new products and services, more and more organizations are forced to move from traditional face-to-face teams to virtual teams or adopt a combination between the two types of teams (Precup et al., 2006). Given the complexities involved in organizing face-to-face interactions among team members and the advancements in electronic communication technologies, firms are turning toward employing virtual NPD teams (Badrinarayanan and Arnett, 2008, Jacobsa et al., 2005, Schmidt et al., 2001). New product development requires the collaboration of new product team members both within and outside the firm (Martinez-Sanchez et al., 2006, McDonough et al., 2001, Ozer, 2000). NPD teams are necessary in most businesses (Leenders et al., 2003). In addition, the pressure of globalization competition companies faced increased pressures to build critical mass, reach new markets, and plug skill gaps , NPD efforts are increasingly being pursued across multiple nations through all forms of organizational arrangements (Cummings and Teng, 2003). Given the resulting differences in time zones and physical distances in such efforts, virtual NPD projects are receiving increasing attention (McDonough et al., 2001, Ale Ebrahim et al., 2010). The use of virtual teams for new product development is rapidly growing and organizations can be dependent on it to sustain competitive advantage (Taifi, 2007). So, virtual teams provide valuable input for new product development (Ale Ebrahim et al., 2009c).

4           PRIMARY MODELS AND HYPOTHESES

We adapted from Bal and Gundry (2001b, 1999), a new primary model with respect to the requirements of the company in determining the appropriate design tools and methods for an effective new product development in virtual teams (Figure 2).

4.1         Hypotheses

Clearly, throughout a review of the existing literature, there remains a gap with respect to the requirements of the company in determining the appropriate design tools and methods for an effective new product development in virtual teams. This research proposes the following hypotheses in order to collect the requirements:

H1. Technology is positively related to process in virtual teams.
H2. Technology is positively related to the knowledge workers in virtual teams.
H3. The process and knowledge worker is positively correlated in virtual teams.
H4. There is not any significant difference between the origins of virtual teams.


Figure 2 The preliminary model for evaluating the effectiveness of virtual teams

5           RESEARCH METHOD AND DATA COLLECTION

To test the hypotheses, we conducted a web-based survey mainly conducting Malaysian and Iranian Manufacturing companies, in a random sample of small and medium enterprises. A survey was developed to collect the data. A Likert scale from 1 to 5 was used. This set up gave respondents a series of attitude dimensions. For each dimension, the respondent was asked whether, and how strongly, they agree or disagree to each dimension using a point rating scale. The questionnaire was emailed to the managing director, R&D manager, the new product development manager, project and design manager and appropriate people who were most familiar with the R&D activities in the firm. The rapid expansion of Internet users has given web-based surveys the potential to become a powerful tool in survey research (Sills and Song, 2002, Ebrahim et al., 2010). Denscombe (2006) findings encourage social researchers to use web-based questionnaires with confidence and the data produced by web-based questionnaires is equivalent to that produced by paper-based questionnaires. Other authors highlighted the data provided by Internet methods are of at least as good quality as those provided by traditional paper-and-pencil methods (Gosling et al., 2004, Deutskens et al., 2006). Invitation e-mails were sent to each respondent, reaching 1500 valid email accounts, with reminders following one month later. 240 enterprises submitted responses, for an overall response rate of 12%. Table 3 presents respondent demographics (missing data deducted). The survey limited to the sample size and sample population in the specified regions.
Table 3 Frequency Distributions of Demographic Variables (N=240)
Variable
Frequency distribution N (%)
Gender
Male
202 (85.6)
Female
34 (14.4)
Country
Iran
136 (56.7)
Malaysia
74 (30.8)
Others (Developing)
15 (6.2)
Others (Developed)
15 (6.2)
Age group
Up to 21
2 (0.9)
21-34
103 (44.6)
35-49
101 (43.7)
50-64
23 (10.0)
Over 65
2 (0.9)
Job Roles
Managing director
51 (22.7)
R&D Manager
25 (11.1)
New Product Development Manager
27 (12.0)
Project Manager
43 (19.1)
Design manager
7 (3.1)
Others
72 (32.0)
Main Business
Automotive/vehicle and components
89 (37.1)
Electronic products and components
30 (12.5)
Fabricated metal products
13 (5.4)
Electrical machinery, apparatuses, appliances, or supplies
12 (5.0)
Machinery/ Industrial equipment
9 (3.8)
Home appliances
12 (5.0)
Pharmaceutical or Chemical products (including cosmetics, paints)
4 (1.7)
Paper products
4 (1.7)
Plastic products
3 (1.2)
Food and Food packaging
1 (0.4)
Instrumentation equipment
4 (1.7)
Textile
2 (0.8)
Oil & Gas
11 (4.6)
Education
14 (5.8)
Others
32 (13.3)

6           ANALYSIS AND RESULTS

For reliability analysis, Cronbach’s Alpha (Cronbach, 1951) was employed to measure internal consistency of each construct. A reliability test was carried out to ensure the research finding have the ability to provide consistence results. As shown in Table 4, all the items with Cronbach’s α greater than 0.6 were included in the analysis and the rest omitted from analysis. In general, the reliability of the questionnaire’s instruments is acceptable.

Table 4 Summary of the final measures and reliabilities
Factor and variable name
Items
Mean*
Std. Deviation
Corrected Item-Total Correlation
Cronbach's Alpha if Item Deleted
Knowledge worker (N=218)
Pe1
Working together
4.037
1.029
0.560
0.872
Pe2
Interaction from inside
3.995
0.912
0.641
0.867
Pe3
Interaction from outside
3.824
1.001
0.634
0.867
Pe4
Interact with colleagues
3.982
0.991
0.649
0.866
Pe5
Online training and e-learning
3.401
1.143
0.597
0.87
Pe6
Consulting service
3.472
0.998
0.624
0.868
Pe7
Collaborating and making decisions with co-workers or supplier
3.863
0.943
0.642
0.867
Pe8
Facilitates cooperation between employees
3.876
0.917
0.651
0.867
Pe9
Facilitates introduction of new employees
3.553
1.079
0.654
0.866
Pe10
Facilitates the management of NPD project
3.706
1.014
0.654
0.866
Pe11
Is used by the competitor
3.106
1.238
0.301
0.893
Process (N=211)
Pr1
Project control (such as Intranet based project status tracking system)
3.64
1.101
0.650
0.928
Pr2
Project reporting system (such as MS-Project reporting system)
3.82
1.026
0.666
0.927
Pr3
Making business together
3.648
0.943
0.627
0.928
Pr4
Reduce traveling time and cost
3.862
1.024
0.722
0.925
Pr5
Reduces the number of working hours need to solve the task
3.827
1.008
0.725
0.925
Pr6
Collaborative solutions
3.701
0.916
0.694
0.926
Pr7
Facilitates data collection in new product development project
3.813
0.952
0.744
0.924
Pr8
Interact with customers for gathering new product features
3.83
0.973
0.674
0.926
Pr9
Provide quantities answer
3.384
0.985
0.664
0.927
Pr10
Generate an easy interpret answer
3.333
0.981
0.642
0.927
Pr11
Ease of generating reports
3.678
1.028
0.740
0.924
Pr12
Ease of data entry
3.775
0.937
0.737
0.924
Pr13
Ability to accommodate multiple users
3.905
1.019
0.667
0.927
Technology (N=218)
Te1
Use internet and electronic mail
4.202
0.986
0.528
0.945
Te2
Online meeting on need basis
3.535
1.13
0.764
0.941
Te3
Web conferencing
3.381
1.17
0.778
0.941
Te4
Seminar on the Web
3.134
1.172
0.742
0.942
Te5
Shared work spaces
3.507
1.063
0.749
0.942
Te6
Video conferencing
3.172
1.161
0.737
0.942
Te7
Audio conferencing
3.221
1.146
0.735
0.942
Te8
Online presentations
3.453
1.107
0.809
0.941
Te9
Share documents (off-line)
3.601
1.075
0.637
0.944
Te10
Share what’s on your computer desktop with people in other locations (in real time)
3.196
1.206
0.577
0.945
Te11
Do not install engineering software (get service through web browser)
3.179
1.211
0.590
0.945
Te12
Access service from any computer (in Network)
3.542
1.041
0.688
0.943
Te13
Standard phone service and hybrid services
3.576
1.07
0.511
0.946
Te14
Access shared files anytime, from any computer
3.686
1.01
0.625
0.944
Te15
Web database
3.649
0.995
0.704
0.943
Te16
Provide instant collaboration
3.595
1.037
0.654
0.943
Te17
Software as a service (eliminating the need to install and run the application on the own computer)
3.531
1.07
0.666
0.943
Te18
Virtual research center for product development
3.455
1.078
0.681
0.943
Te19
Can be integrated/compatible with the other tools and systems
3.688
1.139
0.613
0.944
*Frequency values - 1: Not important; 2: Slightly important; 3: Important; 4: Quite important; 5: Extremely important
To conclude whether the partial correlation of the knowledge workers, variables were small, the Bartlett’s Chi-square test of sphericity and Kaiser-Meyer-Olkin (KMO) was used to measure sampling adequacy (Fathian et al., 2008). Table 5 summarizes the results of KMO, which is 0.878 and significant value for Bartlett's test is less than 0.05, which means there is a good correlation.



Table 5 KMO and Bartlett's Test results
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.
0. 878
Bartlett's Test of Sphericity
Approx. Chi-Square
679.744
df
28
Sig.
.000

An exploratory factor analysis was conducted on eight knowledge worker factors after taking off Pe1, Pe5 and Pe11 which had Cronbach’s α less than 0.6. Using a Principle Component Analysis with a Varimax Rotation and an Eigenvalue of 1 as the cut-off point (Akgün et al., 2008) and an absolute value of a loading greater than 0.5 (Fathian et al., 2008). Factor loading shows only one component extracted. So, all eight items in the knowledge workers can be grouped into a single factor.
The same procedures were performed on process and technology factors. The items and their factor loadings after Exploratory Factor Analysis, Eigenvalue, and percentage of variance, are shown in Table 6, Table 7, Table 8 and Table 9. The 13 process items and the 15 technology items are divided into two different groups, which had an Eigenvalue greater than one.
Table 6 Factor analysis results on 13 process items
Component
Initial Eigenvalues
Rotation Sums of Squared Loadings
Total
% of Variance
Cumulative %
Total
% of Variance
Cumulative %
1
7.158
55.062
55.062
4.255
32.733
32.733
2
1.126
8.662
63.724
4.029
30.991
63.724
3
.951
7.314
71.039



4
.737
5.670
76.708



5
.544
4.185
80.893



6
.461
3.544
84.437



7
.445
3.422
87.859



8
.415
3.192
91.051



9
.333
2.558
93.609



10
.304
2.338
95.947



11
.222
1.707
97.654



12
.173
1.331
98.985



13
.132
1.015
100.000



Extraction Method: Principal Component Analysis
Table 7 Rotated Component Matrix sorted by size for 13 process items
Items
Component

1
2
Pr11
.783
.326
Pr9
.781
.225
Pr10
.767
.213
Pr12
.751
.350
Pr8
.724
.302
Pr13
.576
.443
Pr1
.202
.804
Pr2
.229
.792
Pr3
.248
.724
Pr6
.352
.711
Pr5
.484
.620
Pr4
.482
.614
Pr7
.527
.594
Extraction Method: Principal Component Analysis.   Rotation Method: Varimax with Kaiser Normalization

Table 8 Factor analysis results on 15 technology items
Component
Initial Eigenvalues
Rotation Sums of Squared Loadings
Total
% of Variance
Cumulative %
Total
% of Variance
Cumulative %
1
8.471
56.471
56.471
5.581
37.205
37.205
2
1.681
11.207
67.677
4.571
30.472
67.677
3
.902
6.011
73.688



4
.642
4.281
77.969



5
.530
3.536
81.505



6
.500
3.336
84.840



7
.406
2.709
87.550



8
.356
2.376
89.926



9
.321
2.143
92.069



10
.297
1.980
94.048



11
.252
1.678
95.726



12
.224
1.495
97.221



13
.164
1.092
98.313



14
.156
1.039
99.352



15
.097
.648
100.000



Extraction Method: Principal Component Analysis


Table 9 Rotated Component Matrix sorted by size for 15 technology items
Items
Component

1
2
Te3
.862
.293
Te7
.846
.232
Te4
.846
.265
Te6
.845
.263
Te2
.840
.272
Te8
.793
.388
Te5
.677
.426
Te9
.566
.386
Te17
.206
.816
Te15
.292
.764
Te14
.203
.737
Te19
.248
.730
Te12
.299
.713
Te18
.384
.687
Te16
.335
.656
Extraction Method: Principal Component Analysis.  Rotation Method: Varimax with Kaiser Normalization

We then try to identify the confirmed factors based on the principle of being concise without losing clarity of meaning. After extracting the factors, items with higher loadings are considered more important and have greater influence on the name of selected reduced factors. The names and contents of the two derived factors on process items are:

1-      Factor FPr1: it consists of items Pr8 to Pr13 which is “Interact with customers for gathering new product features “, “Provide quantities answer”, “Generate an easy interpret answer”, “Ease of generating reports”, “Ease of data entry” and “Ability to accommodate multiple users” respectively. This factor is named “Reports generator” because of Pr11 has higher loading factor (0.783).
2-      Factor FPr2: It consists of Pr1 to Pr7 which are “Project control”, “Project reporting system”, “Making business together”, “Reduce traveling time and cost”, “Reduces the number of working hours need to solve the task”, “Collaborative solutions”, and “Facilitates data collection in new product development project” respectively. Since Pr1 has a higher loading (0.804), this factor’s named “Tracking system“.
Consequently, the names and contents of two derived factors on technology items are:
1-      Factor FTe1: it consists of items Te2 to Te9 which is “Online meeting “, “Web conferencing”, “Seminar on the Web”, “Shared work spaces”, “Video conferencing”,” Audio conferencing”, “Online presentations”, and “Share documents” respectively. This factor is named “Web solution” because Te3 has a higher loading factor (0.862).
2-      Factor FTe2: It consists of items Te12 and Te14 to Te19 which are “Access service from any computer (in Network)”, “Access shared files anytime, from any computer”, “Making business together”, “Web database”, “Provide instant collaboration”, “Software as a service”, “Virtual research centre for product development”, and “Can be integrated/compatible with the other tools and systems” respectively. Since Te17 has a higher loading (0.816) this factor’s named “Software as a service (SaaS)“.
Analysis of the Pearson’s correlations indicated a number of positive relationships between the variables themselves. The knowledge worker had significant associations to process and technology, respectively (see Table 10). The correlations may vary country to the country as illustrated in Table 11 and Table 12. Fisher's Exact Test analysis supported there are no significant differences (p > 0.427) between selected countries in terms of knowledge worker, process and technology in virtual teams.

Table 10 Descriptive statistics and correlations between variables (N=240)
Variable
Mean
Std. dev.
1
2
1. Knowledge worker
36.65
13.672


2. Process
42.25
17.191
0.792*

3. Technology
58.72
24.153
0.773*
0.853*
*. Correlation is significant at the 0.01 level (2-tailed).


Table 11 Descriptive statistics and correlations between variables in Iran (N=136)
Variable
Mean
Std. dev.
1
2
1. Knowledge worker
36.14
14.251


2. Process
42.66
17.165
0.791*

3. Technology
60.77
24.429
0.838*
0.865*
*. Correlation is significant at the 0.01 level (2-tailed).

Table 12 Descriptive statistics and correlations between variables in Malaysia (N=74)
Variable
Mean
Std. dev.
1
2
1. Knowledge worker
38.08
12.210


2. Process
42.78
16.770
0.811*

3. Technology
56.95
21.301
0.684*
0.795*
*. Correlation is significant at the 0.01 level (2-tailed).

Table 13 Hypothesis testing results
Hypotheses
Correlation/P value
Conclusion
H1. Technology is positively related to process in virtual teams.
0.853*
Supported
H2. Technology is positively related to the knowledge workers in virtual teams.
0.773*
Supported
H3. The process and knowledge worker is positively correlated in virtual teams.
0.792*
Supported
H4. There is not any significant difference between the origins of virtual teams.
0.427**
Supported
Note: *: p < 0:01, **: p < 0:05

The mean scores for frequency of use to exchange business information are illustrated in Table 14. E-mail is the most frequently used tool for all teams in Malaysia and Iran. Personal telephone call is second most frequently used tool in selected countries. Malaysian firms used more face-to-face interaction than Iranian ones. On the other hand, team base communication technologies such as shared database, group telephone conference, electronic whiteboard and video conference were not often used. Video conference, although used less than once a month in Iranian samples, are most often used by Malaysian firms. Video conferencing may prove effective in bringing remote members together if made available to the teams, and this might be a fruitful area for future research (Lurey and Raisinghani, 2001). Along with Lurey, and Raisinghani (2001) recommendation, item Te6 asked about the need for video conference as a tool for virtual team and, mean of (N=218) 3.172 was obtained which means it is important for the team members.

Table 14 Mean* scores for frequency of use exchange business information tools in Iran and Malaysia
Tools
Iranian teams (N=86)
Malaysian teams (N=31)
E-mail
4.62
4.97
Personal telephone call
4.54
4.63
Fax
4.02
4.00
Face-to-face interaction
3.65
4.23
Shared database/groupware
3.09
2.74
Meeting facilitation software
2.49
2.71
Web collaborative tool
2.42
2.65
Electronic newsletter
2.38
2.59
Voice mail
2.32
3.00
Electronic whiteboard
2.15
2.77
Group telephone conference
2.09
2.76
Video conference
1.85
2.43
*Frequency values- 1: never; 2: once a month; 3: once a week; 4: a few times a week; 5: daily

All factors are summarized in Figure 3. This new model is based on the Bal and Gundry (1999) model with several adjustments derived from data analysis and survey findings. The model provides an overview of effective virtual teams for new product development in selected developing countries.

Figure 3 The new model for effectiveness of virtual teams (Correlation is significant at the 0.01 level (2-tailed)).

7           RESEARCH LIMIT AND FUTURE RESEARCH DIRECTIONS

The model for effective virtual teams developed earlier had made an initial attempt to identify the relationships between the knowledge worker, process and technology factors that were seen as the most critical in the literature. The literature review had focused only on published refereed journal and conference papers, so some important studies may have been excluded from this research. Therefore, it is possible that some factors which were excluded from the framework could be important for evaluation of virtual teams. The study was limited to the sample size and sample population. Future research needs to examine the model and verify it by a larger sample of virtual teams from different sectors since this study was limited to manufacturing sector. In a larger sample, it is possible to compare the results between countries more precisely. We have identified twelve new crucial factors, which differ from precedent, for moving from the team working to successful virtual teaming in new product development.

8           CONCLUSION

This paper is a review by the literature and a field survey identifying the key factors that need to be considered in effective virtual teams. These findings provide an important step in studying how virtual team efficacy is formed and what its consequences are in the context of virtual teams. The results of the study indicate that technology and process are tightly correlated and need to be considered early in virtual teams. Along with Bal and Teo (2001b) and Ale Ebrahim et al. (2009d) findings, success in implementing virtual team working is more about the knowledge worker than technology and process. The survey result showed, all eight items in the knowledge workers remain while the rest is reduced into two main factors. Software as a service, web solution, report generator and tracking system in effective virtual teams should be taken into account for leading such a new phenomena. E-mail is the most frequently used tool for all teams in Malaysia and Iran; therefore, a manager of virtual teams should considerably provide an infrastructure for effective communications between team members.
Future research would now seem to be essential for developing a comprehensive study, combining survey with a case study in different size of companies (e.g. multinational companies and small and medium enterprises) and various types of activities (e.g. research and development and new product development). Such a study needs to investigate the model and verify it by a larger sample of virtual teams from different sectors. In a larger sample, it is possible to compare the results between countries more precisely.

9           REFERENCES

Akgün AE, Dayan M,Benedetto AD (2008). New product development team intelligence: Antecedents and consequences  Inform. Manage., 45(4): 221-226.
Ale Ebrahim N, Ahmed S,Taha Z (2009a). Modified Stage-Gate: A Conceptual Model of Virtual Product Development Process. Afr. J. Mark. Manage., 1(9): 211-219.
Ale Ebrahim N, Ahmed S,Taha Z (2009b). Virtual R & D teams in small and medium enterprises: A literature review. Sci. Res. Essays, 4(13): 1575–1590.
Ale Ebrahim N, Ahmed S,Taha Z (2009c). Virtual Teams for New Product Development – An Innovative Experience for R&D Engineers. Eur. J. Educ. Stud., 1(3): 109-123.
Ale Ebrahim N, Ahmed S,Taha Z (2009d). Virtual Teams: a Literature Review. Aust. j. basic appl. sci., 3(3): 2653-2669.
Ale Ebrahim N, Ahmed S,Taha Z (2010). Critical Factors for New Product Developments in SMEs Virtual Team. Afr. J. Bus. Manage., 4(11): 2247-2257.
Anderson AH, Mcewan R, Bal J,Carletta J (2007). Virtual team meetings: An analysis of communication and context. Comput. Hum. Behav., 23(2558–2580.
Badrinarayanan V,Arnett DB (2008). Effective virtual new product development teams: an integrated framework. J Bus Ind Mark, 23(4): 242-248.
Bal J,Gundry J (1999). Virtual teaming in the automotive supply chain. Team Perform. Manage., 5(6): 174 - 193.
Bal J,Teo PK (2001a). Implementing virtual teamworking: Part 2 - a literature review. Logist. Infor. Manage., 14(3): 208 - 222.
Bal J,Teo PK (2001b). Implementing virtual teamworking: Part 3 – a methodology for introducing virtual teamworking. Logist. Infor. Manage., 14(4): 276 - 292.
Bell BS,Kozlowski SWJ (2002). A Typology of Virtual Teams: Implications for Effective Leadership. Group Organ. Manage., 27(1): 14-49.
Bouchard L,Cassivi L (2004). Assessment of a Web-groupware technology for virtual teams. IAMOT 2004. Washington, D.C.
Chudoba KM, Wynn E, Lu M, Watson-Manheim,Beth M (2005). How virtual are we? Measuring virtuality and understanding its impact in a global organization. Inform. Syst. J., 15(4): 279-306.
Cronbach L (1951). Coefficient alpha and the internal structure of tests. Psychometrika., 16(3): 297-334.
Cummings JL,Teng BS (2003). Transferring R&D knowledge: the key factors affecting knowledge transfer success. J. Eng. Tech. Manage., 20(1): 39–68.
Dekker DM, Rutte CG,Van Den Berg PT (2008). Cultural differences in the perception of critical interaction behaviors in global virtual teams. Int. J. Intercult. Rel., 32(5): 441-452.
Denscombe M (2006). Web-Based Questionnaires and the Mode Effect: An Evaluation Based on Completion Rates and Data Contents of Near-Identical Questionnaires Delivered in Different Modes. Soc. Sci. Comput. Rev., 24(2): 246-254.
Deutskens E, De Ruyter K,Wetzels M (2006). An assessment of equivalence between online and mail surveys in service research. J. Serv. Res., 8(4): 346-355.
Ebrahim NA, Ahmed S,Taha Z (2010). Virtual R&D teams and SMEs growth: A comparative study between Iranian and Malaysian SMEs. Afr. J. Bus. Manage., 4(11): 2368-2379.
Fathian M, Akhavan P,Hoorali M (2008). E-readiness assessment of non-profit ICT SMEs in a developing country: The case of Iran. Technovation., 28(9): 578-590.
Fuller MA, Hardin AM,Davison RM (2006). Efficacy in Technology-Mediated Distributed Team  J. Manage. Inform. Syst., 23(3): 209-235.
Furst SA, Reeves M, Rosen B,Blackburn RS (2004). Managing the life cycle of virtual teams. Acad. Manage. Exec., 18(2): 6-20.
González FJM,Palacios TMB (2002). The effect of new product development techniques on new product success in Spanish firms. Ind. Market. Manag., 31(3): 261-271.
Gosling SD, Vazire S, Srivastava S,John OP (2004). Should We Trust Web-Based Studies? A Comparative Analysis of Six Preconceptions About Internet Questionnaires. Am. Psychol., 59(2): 93-104.
Hertel GT, Geister S,Konradt U (2005). Managing virtual teams: A review of current empirical research. Hum. Resour. Manage. R., 15(69–95.
Huang X, Soutar GN,Brown A (2004). Measuring new product success: an empirical investigation of Australian SMEs. Ind. Market. Manag., 33(117– 123.
Hunsaker PL,Hunsaker JS (2008). Virtual teams: a leader's guide. Team Perform. Manage., 14(1/2): 86-101.
Jacobsa J, Moll JV, Krause P, Kusters R, Trienekens J,Brombacher A (2005). Exploring defect causes in products developed by virtual teams  Inform. Software. Tech., 47(6): 399-410.
Jarvenpaa SL,Leidner DE (1999). Communication and Trust in Global Virtual Teams. Organ. Sci., 10(6): 791 - 815
Johansen K. (2005). Collaborative Product Introduction within Extended Enterprises. PhD, Linköpings Universitet.
Kayworth TR,Leidner DE (2002). Leadership Effectiveness in Global Virtual Teams  Manage. Inf. Syst., 18(3): 7 - 40
Kirkman BL, Rosen B, Gibson CB, Tesluk PE,Mcpherson SO (2002). Five challenges to virtual team success: lessons from Sabre Inc. Acad. Manage. Exec., 16(3): 67-79.
Kirkman BL, Rosen B, Tesluk PE,Gibson CB (2004). THE IMPACT OF TEAM EMPOWERMENT ON VIRTUAL TEAM PERFORMANCE: THE MODERATING ROLE OF FACE-TO-FACE INTERACTION. Acad. Manage. J., 47(2): 175-192.
Kratzer J, Leenders R,Engelen JV (2005). Keeping Virtual R&D Teams Creative. Res. Technol. Manage., 1(March-April): 13-16.
Lam P-K, Chin K-S, Yang J-B,Liang W (2007). Self-assessment of conflict management in client-supplier collaborative new product development. Ind. Manage. Data. Syst., 107(5): 688 - 714.
Leenders RTaJ, Engelen JMLV,Kratzer J (2003). Virtuality, communication, and new product team creativity: a social network perspective. J. Eng. Technol. Manage., 20(69–92.
Lin C, Standing C,Liu Y-C (2008). A model to develop effective virtual teams. Decis. Support. Syst., 45(4): 1031-1045.
Lurey JS,Raisinghani MS (2001). An empirical study of best practices in virtual teams  Inform. Manage., 38(8): 523-544.
Malhotra A,Majchrzak A (2004). Enabling knowledge creation in far-flung teams: best practices for IT support and knowledge sharing. J. Knowl. Manage., 8(4): 75 - 88.
Martinez-Sanchez A, Pérez-Pérez M, De-Luis-Carnicer P,Vela-Jiménez MJ (2006). Teleworking and new product development. Eur. J. Innovat. Manag., 9(2): 202-214.
Massey AP, Montoya-Weiss MM,Yu-Ting H (2003). Because Time Matters: Temporal Coordination in Global Virtual Project Teams. J. Manage. Inform. Syst., 19(4): 129-155.
Mcdonough EF, Kahn KB,Barczak G (2001). An investigation of the use of global, virtual, and collocated new product development teams. J. Prod. Innovat. Manag., 18(2): 110–120.
Mikkola JH, Maclaran P,Wright S (2005). Book reviews. R&D. Manage., 35(1): 104-109.
Ottosson S (2004). Dynamic product development -- DPD. Technovation., 24(3): 207-217.
Ozer M (2000). Information Technology and New Product Development Opportunities and Pitfalls. Ind. Market. Manag., 29(5): 387-396.
Precup L, O'sullivan D, Cormican K,Dooley L (2006). Virtual team environment for collaborative research projects. Int. J. Innov. Learn., 3(1): 77 - 94
Rosen B, Furst S,Blackburn R (2007). Overcoming Barriers to Knowledge Sharing in Virtual Teams. Organ. Dyn., 36(3): 259–273.
Schmidt JB, Montoya-Weiss MM,Massey AP (2001). New product development decision-making effectiveness: Comparing individuals, face-to-face teams, and virtual teams. Decision. Sci., 32(4): 1-26.
Shachaf P (2008). Cultural diversity and information and communication technology impacts on global virtual teams: An exploratory study. Inform. Manage., 45(2): 131-142.
Shachaf P,Hara N (2005). Team Effectiveness in Virtual Environments: An Ecological Approach. In: FERRIS PAG, S., (ed.) Teaching and Learning with Virtual Teams. Idea Group Publishing.
Shin Y (2005). Conflict Resolution in Virtual Teams. Organ. Dyn., 34(4): 331-345.
Sills SJ,Song C (2002). Innovations in Survey Research: An Application of Web-Based Surveys. Soc. Sci. Comput. Rev., 20(1): 22-30.
Starbek M,Grum J (2002). Concurrent engineering in small companies. Int. J. Mach. Tool. Manu., 42(3): 417-426.
Stock GN,Tatikonda MV (2004). External technology integration in product and process development. Int. J. Oper. Prod. Man., 24(7): 642-665.
Taifi N (2007). Organizational Collaborative Model of Small and Medium Enterprises in the Extended Enterprise Era: Lessons to Learn from a Large Automotive Company and its dealers’ Network. Proceedings of the 2nd PROLEARN Doctoral Consortium on Technology Enhanced Learning, in the 2nd European Conference on Technology Enhanced Learning. Crete, Greece: CEUR Workshop Proceedings.
Thissen MR, Jean MP, Madhavi CB,Toyia LA (2007). Communication tools for distributed software development teams. Proceedings of the 2007 ACM SIGMIS CPR conference on Computer personnel research: The global information technology workforce. St. Louis, Missouri, USA: ACM.
Walvoord AaG, Redden ER, Elliott LR,Coovert MD (2008). Empowering followers in virtual teams: Guiding principles from theory and practice. Comput. Hum. Behav., 24(5): 1884-1906.
Wong SS,Burton RM (2000). Virtual Teams: What are their Characteristics, and Impact on Team Performance? Comput. Math. Organ. Theor., 6(4): 339-360.



The best selection of "Virtual R&D Teams" publications: EFFECTIVE VIRTUAL TEAMS FOR NEW PRODUCT DEVELOPMENT

The best selection of "Virtual R&D Teams" publications: Virtual Collaborative R&D Teams in Malaysia Manufacturing SMEs

$
0
0

Virtual Collaborative R&D Teams in Malaysia Manufacturing SMEs

Virtual Collaborative R&D Teams in Malaysia Manufacturing SMEs

JournalAdvanced Materials Research (Volumes 433 - 440)
VolumeMaterials Science and Information Technology
Edited byCai Suo Zhang
Pages1653-1659
DOI10.4028/www.scientific.net/AMR.433-440.1653
CitationNader Ale Ebrahim et al., 2012, Advanced Materials Research, 433-440, 1653
Online sinceJanuary, 2012
AuthorsNader Ale Ebrahim, Shamsuddin Ahmed, Salwa Hanim Abdul Rashid, M A Wazed, Zahari Taha
KeywordsCollaborative Tools, Medium Enterprises, Questionnaires, Small Enterprises, Virtual Teams
Abstract This paper presents the results of empirical research conducted during March to September 2009. The study focused on the influence of virtual research and development (R&D) teams within Malaysian manufacturing small and medium sized enterprises (SMEs). The specific objective of the study is better understanding of the application of collaborative technologies in business, to find the effective factors to assist SMEs to remain competitive in the future. The paper stresses to find an answer for a question “Is there any relationship between company size, Internet connection facility and virtuality?”. The survey data shows SMEs are now technologically capable of performing the virtual collaborative team, but the infrastructure usage is less. SMEs now have the necessary technology to begin the implementation process of collaboration tools to reduce research and development (R&D) time, costs and increase productivity. So, the manager of R&D should take the potentials of virtual teams into account.
Full PaperPDF Get the full paper by clicking here

The best selection of "Virtual R&D Teams" publications: Virtual Collaborative R&D Teams in Malaysia Manufacturing SMEs

The best selection of "Virtual R&D Teams" publications: Technology Use in the Virtual R&D Teams

$
0
0

Technology Use in the Virtual R&D Teams

Technology Use in the Virtual R&D Teams


Nader Ale Ebrahim, Shamsuddin Ahmed, Salwa Hanim Abdul Rashid and Zahari Taha

American Journal of Engineering and Applied Sciences
DOI: 10.3844/ajeassp.2012.9.14
Volume 5, Issue 1
Pages 9-14
 
 

Abstract


Problem statement: Although, literature proves the importance of the technology role in the effectiveness of virtual Research and Development (R&D) teams for new product development. However, the factors that make technology construct in a virtual R&D team are still ambiguous. The manager of virtual R&D teams for new product development does not know which type of technology should be used. Approach: To address the gap and answer the question, the study presents a set of factors that make a technology construct. The proposed construct modified by finding of the field survey (N = 240). We empirically examine the relationship between construct and its factors by employing the Structural Equation Modeling (SEM). A measurement model built base on the 19 preliminary factors that extracted from literature review. The result shows 10 factors out of 19 factors maintaining to make technology construct. Results: These 10 technology factors can be grouped into two constructs namely Web base communication and Web base data sharing. The findings can help new product development managers of enterprises to concentrate in the main factors for leading an effective virtual R&D team. In addition, it provides a guideline for software developers as well. Conclusion: The second and third generation technologies are now more suitable for developing new products through virtual R&D teams.
 
 

Citation


Ebrahim, N.A., S. Ahmed, S.H.A. Rashid and Z. Taha, 2012. Technology use in the virtual R&D teams. Am. J. Eng. Applied Sci., 5: 9-14.
DOI: 10.3844/ajeassp.2012.9.14
URL: http://thescipub.com/abstract/10.3844/ajeassp.2012.9.14

The best selection of "Virtual R&D Teams" publications: Technology Use in the Virtual R&D Teams

The best selection of "Virtual R&D Teams" publications: Virtual Teams and Management Challenges

$
0
0

Virtual Teams and Management Challenges

Virtual Teams and Management Challenges

Issues: Summer 2011 - Volume 9 Issue 3
Posted On 2012-02-12 03:56:42
Author(s): Nader Ale Ebrahim, Shamsuddin Ahmed, and Zahari Taha
Rating: 10.0/10 (1 vote cast)
Print Friendly
Introduction
Collaboration is becoming increasingly important in creating the knowledge that makes business more competitive. Virtual teams are growing in popularity [1] and many organizations have responded to their dynamic environments by introducing virtual teams. Additionally, the rapid development of new communication technologies such as the Internet has accelerated this trend so that today, most of the larger organization employs virtual teams to some degree [2]. A growing number of flexible and adaptable organizations have explored the virtual environment as one means of achieving increased responsiveness [3]. Howells et al. [4] state that the shift from serial to simultaneous and parallel working has become more commonplace. Based on conventional information technologies and Internet-based platforms virtual environments may be used to sustain companies’ progress through virtual interaction and communication.
This paper provides comprehensive aspects of virtual teams based on authentic and reputed publications, after define virtual teams and its characteristics, addressing virtual environments and relationship with management and employee challenges. Finally conclude that virtual team cannot be successful unless the knowledge and information in the company are effectively captured, shared and internalized by the entity manager. Doing an extensive literature survey, further studies are recommended. Managerial implications on those issues are also discussed.
 Virtual  Teams Definition
This era is growing popularity for virtual team structures in organizations [1, 5]. Martins et al. [6] in a major review of the literature on virtual teams, conclude that ‘with rare exceptions all organizational teams are virtual to some extent.’ We have moved away from working with people who are in our visual proximity to working with people around the globe [7]. Although virtual teamwork is a current topic in the literature on global organizations, it has been problematic to define what ‘virtual’ means across multiple institutional contexts [8]. It is worth mentioning that virtual teams are often formed to overcome geographical or temporal separations [9]. Virtual teams work across boundaries of time and space by utilizing modern computer-driven technologies. The term “virtual team” is used to cover a wide range of activities and forms of technology-supported working [10]. Virtual teams are comprised of members who are located in more than one physical location. This team trait has fostered extensive use of a variety of forms of computer-mediated communication that enable geographically dispersed members to coordinate their individual efforts and inputs [11]. From the perspective of Leenders et al.[12] virtual teams are groups of individuals collaborating in the execution of a specific project while geographically and often temporally distributed, possibly anywhere within (and beyond) their parent organization. Amongst the different definitions of the concept of a virtual team the following from is one of the most widely accepted: [13], ”virtual teams as groups of geographically, organizationally and/or time dispersed workers brought together by information technologies to accomplish one or more organization tasks”. The degree of geographic dispersion within a virtual team can vary widely from having one member located in a different location than the rest of the team to having each member located in a different country [14].
Advantages and Pitfalls of Virtual Teams
The availability of a flexible and configurable base infrastructure is one of the main advantages of agile virtual teams. [10]. Virtual R&D teams which members do not work at the same time or place [15] often face tight schedules and a need to start quickly and perform instantly [16]. On the other hand, virtual teams reduce time-to-market [17]. Lead Time or Time to market has been generally admitted to be one of the most important keys for success in manufacturing companies [18]. Table 1 summarizes some of the main advantages and
Table 2 some of the main disadvantages associated with virtual teaming.

Table 1: Some of the main advantages associated with virtual teaming.
Advantages
References
Reducing relocation time and costs, reduced travel costs
[1, 19-29]
Reducing time-to-market [Time also has an almost 1:1 correlation with cost, so cost will likewise be reduced if the time-to market is quicker [30]]
[17, 18, 23, 24, 29, 31-38]
Able to tap selectively into center of excellence, using the best talent regardless of location
[1, 22, 24, 26, 39-43]
Greater productivity, shorter development times
[19, 35]
Greater degree of freedom to individuals involved with the development project
[44]
Higher degree of cohesion (Teams can be organized whether or not members are in proximity to one another)
[1, 45, 46]
Producing better outcomes and attract better employees
[6, 20]
Provide organizations with unprecedented level of flexibility and responsiveness
[13, 24, 28, 31, 36, 47-49]
Respond quickly to changing business environments
[21, 35]
Sharing knowledge, experiences
[50, 51]
Enable organizations to respond faster to increased competition
[47, 52]
Better team outcomes (quality, productivity, and satisfaction)
[46, 53]
Most effective in making decisions
[54]
Higher team effectiveness and efficiency
[17, 55]
Self-assessed performance and high performance.
[8, 56]
Cultivating and managing creativity
[12]
Improve the detail and precision of design activities
[57]
Provide a vehicle for global collaboration and coordination of R&D-related activities
[58]

Table 2: Some of the main disadvantages associated with virtual teaming.
Disadvantages
References
lack of physical interaction
[1, 20, 23, 54]
everything to be reinforced in a much more structured, formal process
[59].
Challenges of project management are more related to the distance between team members than to their cultural or language differences
[60].
Challenges of determining the appropriate task technology fit
[61, 62]
Cultural and functional diversity in virtual teams lead to differences in the members’ thought processes. Develop trust among the members are challenging
[23, 56, 58]
Will create challenges and obstacles like technophobia ( employees who are uncomfortable with computer and other telecommunications technologies)
[7]
Variety of practices (cultural and work process diversity) and employee mobility negatively impacted performance in virtual teams.
[8]
Team members need special training and encouragement
[63]
Virtual and Traditional Teams
Unlike a traditional team, a virtual team works across space, time and organizational boundaries with links strengthened by webs of communication technologies. However, many of the best practices for traditional teams are similar to those for virtual teams [21]. Virtual teams are significantly different from traditional teams. In the proverbial traditional team, the members work next to one another, while in virtual teams they work in different locations. In traditional teams the coordination of tasks is straightforward and performed by the members of the team together; in virtual teams, in contrast, tasks must be much more highly structured. Also, virtual teams rely on electronic communication, as opposed to face-to-face communication in traditional teams. Table 3 summarizes these distinctions [45]. Diversity in national background and culture is common in transnational and virtual teams [14].

Table 3: Virtual and traditional teams are usually viewed as opposites.
Fully Traditional TeamFully Virtual Team
Team members all co-located.Team members all in different locations.
Team members communicate face-to-face (i.e., synchronous and personal)Team members communicate through asynchronous and impersonal means.
Team members coordinate team task together, in mutual adjustment.The team task is so highly structured that coordination by team members is rarely necessary.

In particular, reliance on computer-mediated communication makes virtual teams unique from traditional ones [16]. The processes used by successful virtual teams will be different from those used in face-to-face collaborations (FFCs) [20]. In an innovation network resembling a “traditional” organization, the innovation process is more restricted by location and time. In other words, the innovation process mostly takes place within the framework of physical offices and working hours. In virtual organizations, individuals’ work is not restricted by time and place, and communication is strongly facilitated by IT. Such a product development environment allows a greater degree of freedom to individuals involved with the development project [44]. Hence multinational companies (MNC) are more likely to become tightly integrated into global R&D network than smaller unit [64]. Distributed teams can carry out critical tasks with appropriate decision support technologies [65].
Physical Versus Virtual
Pawar and Sharifi [66] study of virtual versus collocated team success and classified physical teams versus virtual teams in six categories. Table 4 summarizes these differences.

Table 4: Classifying physical teams versus virtual teams
ActivityPhysical teams natureVirtual teams nature
Nature of interaction
opportunity to share work and non-work related information
the extent of informal exchange of information is minimal
Utilization of resources
Increases the opportunity for allocation and sharing of resources
each collaborating body will have to have access to similar technical and non-technical infrastructure
Control and accountability (over and within the project):
the project manager provides the Context for ongoing monitoring of activities and events and thus enhances their ability to respond to requirements.
The collaborating bodies were accountable to the task leaders and the project coordinator who had limited authority to enforce any penalties for failure to achieve their tasks
Working environment
they encountered constraints accessing information and interacting with others outside the collocated team within the company
Sometimes not able to share ideas or dilemmas with other partners.
Cultural and educational background
members of the team are likely to have similar and complementary cultural and educational background
the team members varied in their education, culture, language, time orientation and expertise
Lurey and Raisinghani [59] base on virtual teams survey in 12 separate virtual teams from eight different sponsor companies in the high technology found that, organizations choosing to implement virtual teams should focus much of their efforts in the same direction they would if they were implementing traditional, co-located teams.
Management Challenges
More and more companies are faced with the necessity to get the knowledge and expertise they require in different projects from different domains and areas [67], therefore, people from different companies often need to work together to bring the entire knowledge and experience that are needed for the success of a new product, process or service. Virtual teams represent a large pool of know-how which seems to be a promising source of companies’ growth. At present, except for open source software, little is known about how to utilize this know-how [68]. Hence manager of enterprises should establish a connection between different departments and companies through virtual team stand on information technology. Based on a time scale, Figure 1 presents significant innovations that have had an impact on operation management (OM) [69]. Over the past decade, the developments in communications, primarily based on ICTs, have created a new platform for OM to connect enterprises and customers in a seamless information network.
The continuous rapid growth in project information volume as the project progresses makes it increasingly difficult to find, organize, access and maintain the information required by project users [70]. This particular problem can be highlighted in two cases document management on site and Information management at the facilities management stage [70]. Dealing with multiple, cross functional people and teams highlighted managing challenge. Manager of virtual team should overcome the managing conflict [49, 62, 71-74] , cultural and functional diversity in virtual teams [16, 23, 42, 43, 56, 58, 75-78] and mistrust among the team members [1, 50, 79-81].


Figure 1 Innovation in operations management (Source: Bayraktar et al.(2007))
Conclusions
Since cross functional and virtual work teams are dealing with complex problems, it makes sense that cross functional virtual management teams are needed to support them. Problems from one team can pollinate widely on to other virtual teams. Management must define the escalation path to resolve virtual, cross functional issues. While reviewing the previous study refer to Table 1 and
Table 2, it’s believed that the advantages of working on the basis of virtual teams far outweigh the disadvantages and firms cannot be successful unless the knowledge and information in the company are effectively captured, shared and internalized by the entities virtual team members.
This paper has provided an extensive review of literature and related resources covering the theme of virtual teams and management issue. Clearly there is a considerable scope for extending this study to specify filed such as small and medium enterprises (SMEs) and relationship with virtual team. Further research has to be done on this topic to fully understand the influence of virtual team on company practically. There is considerable literature on distributed and virtual teams. The coverage includes management challenges, technology enablers and organizational and multi-cultural challenges. However, limited work has been directed towards exploring and analyzing the existing inter-relation. Therefore future research shall be aimed at shifting away from investigating virtual teams separately to the formation and development of a collaborative system which can support a dispersed team effectively. Keeping virtual teams in company growth processes, operating innovatively, effectively and efficiently is of a high importance, but the issue has poorly been addressed simultaneously in the previous studies.
Managers of company should invest less in tangible assets, but more in virtual team to generate knowledge, and increase employees’ creativity to stimulate incremental innovations in already existing information technology that will directly generate their future competitive advantage.
References
1. Cascio, W.F., Managing a virtual workplace. The Academy of Management Executive, 2000. 14(3): p. 81-90.
. Hertel, G.T., S. Geister, and U. Konradt, Managing virtual teams: A review of current empirical research. Human Resource Management Review, 2005. 15: p. 69-95.
3. Furst, S., R. Blackburn, and B. Rosen, Virtual team effectiveness: a proposed research agenda. Information Systems Journal, 2001. 9(4): p. 249 – 269.
4. Howells, J., A. James, and K. Malik, The sourcing of technological knowledge: distributed innovation processes and dynamic change. R&D Management, 2003. 33(4): p. 395-409.
5. Walvoord, A.A.G., et al., Empowering followers in virtual teams: Guiding principles from theory and practice”, Computers in Human Behavior (article in press). 2008.
6. Martins, L.L., L.L. Gilson, and M.T. Maynard, Virtual teams: What do we know and where do we go from here? Journal of Management, 2004. 30(6): p. 805-835.
7. Johnson, P., V. Heimann, and K. O’Neill, The “wonderland” of virtual teams. Journal of Workplace Learning, 2001. 13(1): p. 24 – 30.
8. Chudoba, K.M., et al., How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 2005. 15(4): p. 279-306.
9. Cascio, W.F. and S. Shurygailo, E-Leadership and Virtual Teams. Organizational Dynamics, 2003. 31(4): p. 362-376.
10. Anderson, A.H., et al., Virtual team meetings: An analysis of communication and context. Computers in Human Behavior, 2007. 23: p. 2558-2580.
11. Peters, L.M. and C.C. Manz, Identifying antecedents of virtual team collaboration. Team Performance Management,, 2007. 13(3/4): p. 117-129.
12. Leenders, R.T.A.J., J.M.L.V. Engelen, and J. Kratzer, Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 2003. 20: p. 69-92.
13. Powell, A., G. Piccoli, and B. Ives, Virtual teams: a review of current literature and directions for future research. The Data base for Advances in Information Systems, 2004. 35(1): p. 6-36.
14. Staples, D.S. and L. Zhao, The Effects of Cultural Diversity in Virtual Teams Versus Face-to-Face Teams. Group Decision and Negotiation, 2006 15(4): p. 389-406.
15. Stoker, J.I., et al., Leadership and innovation: relations between leadership, individual characteristics and the functioning of R&D teams. The International Journal of Human Resource Management, 2001. 12(7): p. 1141 – 1151.
16. Munkvold, B.E. and I. Zigurs, Process and technology challenges in swift-starting virtual teams. Information & Management, 2007. 44(3): p. 287-299.
17. May, A. and C. Carter, A case study of virtual team working in the European automotive industry. International Journal of Industrial Ergonomics, 2001. 27: p. 171-186.
18.  Sorli, M., et al., Managing product/process knowledge in the concurrent/simultaneous enterprise environment. Robotics and Computer-Integrated Manufacturing, 2006. 22: p. 399-408.
19. McDonough, E.F., K.B. Kahn, and G. Barczak, An investigation of the use of global, virtual, and collocated new product development teams. The Journal of Product Innovation Management, 2001. 18(2): p. 110-120.
20.  Rice, D.J., et al., Improving the Effectiveness of Virtual Teams by Adapting Team Processes. Computer Supported Cooperative Work, 2007. 16: p. 567-594.
21. Bergiel, J.B., E.B. Bergiel, and P.W. Balsmeier, Nature of virtual teams: a summary of their advantages and disadvantages. Management Research News, 2008. 31(2): p. 99-110.
22.          Fuller, M.A., A.M. HARDIN, and R.M. DAVISON, Efficacy in Technology-Mediated Distributed Team Journal of Management Information Systems, 2006. 23(3): p. 209-235.
23.          Kankanhalli, A., B.C.Y. Tan, and K.-K. Wei, Conflict and Performance in Global Virtual Teams. Journal of Management Information Systems, 2006. 23(3): p. 237-274.
24.          Prasad, K. and K.B. Akhilesh, Global virtual teams: what impacts their design and performance? Team Performance Management, 2002 8(5/6): p. 102 – 112.
25.          Olson-Buchanan, J.B., et al., Utilizing virtual teams in a management principles course. Education + Training, 2007. 49(5): p. 408-423.
26.          Boudreau, M.-C., et al., Going Global: Using Information Technology to Advance the Competitiveness Of the Virtual Transnational Organization. Academy of Management Executive, 1998. 12(4): p. 120-128.
27.          Biuk-Aghai, R.P., Patterns of Virtual Collaboration, in Faculty of Information Technology. 2003, University of Technology: Sydney. p. 291.
28.          Liu, B. and S. Liu, Value Chain Coordination with Contracts for Virtual R&D Alliance Towards Service, in The 3rd IEEE International Conference on Wireless Communications, Networking and Mobile Computing, WiCom 2007. 2007, IEEE Xplore: Shanghai, China. p. 3367-3370.
29.          Lipnack, J. and J. Stamps, Why The Way to Work, in Virtual Teams , Second Edition 2000, John Wiley & Sons: New York. p. 1-25.
30.          Rabelo, L. and T.H.S. Jr., Sustaining growth in the modern enterprise: A case study. Jornal of Engineering and Technology Management JET-M, 2005. 22 p. 274-290.
31.          Chen, T.-Y., Knowledge sharing in virtual enterprises via an ontology-based access control approach. Computers in Industry, 2008. Article In press: p. No of Pages 18.
32.          Shachaf, P., Cultural diversity and information and communication technology impacts on global virtual teams: An exploratory study. Information & Management, 2008 45(2): p. 131-142.
33.          Kusar, J., et al., How to reduce new product development time. Robotics and Computer-Integrated Manufacturing 2004. 20: p. 1-15.
34.          Ge, Z. and Q. Hu, Collaboration in R&D activities: Firm-specific decisions. European Journal of Operational Research 2008. 185: p. 864-883.
35.          Mulebeke, J.A.W. and L. Zheng, Incorporating integrated product development with technology road mapping for dynamism and innovation. International Journal of Product Development   2006 3(1): p. 56 – 76.
36.          Guniš, A., J. Šišlák, and Š. Valčuha, Implementation Of Collaboration Model Within SME’s, in Digital Enterprise Technology-Perspectives and Future Challenges, P.F. Cunha and P.G. Maropoulos, Editors. 2007, Springer US. p. 377-384
37.          Zhang, S., W. Shen, and H. Ghenniwa, A review of Internet-based product information sharing and visualization. Computers in Industry 2004. 54(1): p. 1-15.
38.          Sridhar, V., et al., Analyzing Factors that Affect Performance of Global Virtual Teams, in Second International Conference on Management of Globally Distributed Work 2007: Indian Institute of Management Bangalore, India. p. 159-169.
39.          Criscuolo, P., On the road again: Researcher mobility inside the R&D network. Research Policy, 2005. 34: p. 1350-1365
40.          Samarah, I., S. Paul, and S. Tadisina. Collaboration Technology Support for Knowledge Conversion in Virtual Teams: A Theoretical Perspective. in 40th Hawaii International Conference on System Sciences (HICSS). 2007. Hawai.
41.          Furst, S.A., et al., Managing the life cycle of virtual teams. Academy of Management Executive, 2004. 18(2): p. 6-20.
42.          Badrinarayanan, V. and D.B. Arnett, Effective virtual new product development teams: an integrated framework. Journal of Business & Industrial Marketing, 2008. 23(4): p. 242-248.
43.          Boutellier, R., et al., Management of dispersed product development teams: The role of information technologies. R&D Management, 1998. 28(13-25).
44.          Ojasalo, J., Management of innovation networks: a case study of different approaches. European Journal of Innovation Management, 2008. 11(1): p. 51-86.
45.          Kratzer, J., R. Leenders, and J.V. Engelen, Keeping Virtual R&D Teams Creative. Industrial Research Institute, Inc., 2005. March-April: p. 13-16.
46.          Gaudes, A., et al., A Framework for Constructing Effective Virtual Teams The Journal of E-working 2007 1(2): p. 83-97
47.          Hunsaker, P.L. and J.S. Hunsaker, Virtual teams: a leader’s guide. Team Performance Management, 2008. 14(1/2): p. 86-101.
48.          Pihkala, T., E. Varamaki, and J. Vesalainen, Virtual organization and the SMEs: a review and model development. Entrepreneurship & Regional Development, 1999 11(4): p. 335 – 349.
49.          Piccoli, G., A. Powell, and B. Ives, Virtual teams: team control structure, work processes, and team effectiveness. Information Technology & People, 2004. 17(4): p. 359 – 379.
50.          Rosen, B., S. Furst, and R. Blackburn, Overcoming Barriers to Knowledge Sharing in Virtual Teams. Organizational Dynamics, 2007. 36(3): p. 259-273.
51.          Zakaria, N., A. Amelinckx, and D. Wilemon, Working Together Apart? Building a Knowledge-Sharing Culture for Global Virtual Teams. Creativity and Innovation Management, 2004. 13(1): p. 15-29.
52.          Pauleen, D.J., An Inductively Derived Model of Leader-Initiated Relationship Building with Virtual Team Members. Journal of Management Information Systems, 2003. 20(3): p. 227-256.
53.          Ortiz de Guinea, A., J. Webster, and S. Staples. A Meta-Analysis of the Virtual Teams Literature. in Symposium on High Performance Professional Teams Industrial Relations Centre. 2005. School of Policy Studies, Queen’s University, Kingston, Canada.
54.          Hossain, L. and R.T. Wigand, ICT Enabled Virtual Collaboration through Trust. Journal of Computer-Mediated Communication, 2004. 10(1).
55.          Shachaf, P. and N. Hara, Team Effectiveness in Virtual Environments: An Ecological Approach, in Teaching and Learning with Virtual Teams, P.a.G. Ferris, S.,, Editor. 2005, Idea Group Publishing. p. 83-108.
56.          Poehler, L. and T. Schumacher, The Virtual Team Challenge: Is It Time for Training?, in PICMET 2007 2007 Portland, Oregon – USA p. 2205-2211.
57.          Vaccaro, A., F. Veloso, and S. Brusoni, The Impact of Virtual Technologies on Organizational Knowledge Creation: An Empirical Study, in Hawaii International Conference on System Sciences. 2008, Proceedings of the 41st Annual Publication p. 352-352.
58.          Paul, S., et al. Understanding Conflict in Virtual Teams: An Experimental Investigation using Content Analysis. in 38th Hawaii International Conference on System Sciences. 2005 Hawaii.
59.          Lurey, J.S. and M.S. Raisinghani, An empirical study of best practices in virtual teams Information & Management, 2001. 38(8): p. 523-544.
60.          Martinez-Sanchez, A., et al., Teleworking and new product development. European Journal of Innovation Management, 2006. 9(2): p. 202-214.
61.          Qureshi, S. and D. Vogel, Adaptiveness in Virtual Teams: Organisational Challenges and Research Directions. Group Decision and Negotiation 2001. 10(1): p. 27-46
62.          Ocker, R.J. and J. Fjermestad, Communication differences in virtual design teams: findings from a multi-method analysis of high and low performing experimental teams. The DATA BASE for Advances in Information Systems, 2008. 39(1): p. 51-67.
63.          Ryssen, S.V. and S.H. Godar, Going international without going international: multinational virtual teams. Journal of International Management, 2000 6 (1): p. 49-60.
64.          Boehe, D.M., Product development in MNC subsidiaries: Local linkages and global interdependencies. Journal of International Management, 2007. 13: p. 488-512.
65.          Chen, M., et al., Team Spirit: Design, implementation, and evaluation of a Web-based group decision support system. Decision Support Systems, 2007. 43: p. 1186-1202.
66.          Pawar, K.S. and S. Sharifi, Physical or virtual team collocation: Does it matter? International Journal of Production Economics 1997. 52: p. 283-290.
67.          Precup, L., et al., Virtual team environment for collaborative research projects. International Journal of Innovation and Learning, 2006. 3(1): p. 77 – 94
68.          Fuller, J., et al., Community based innovation: How to integrate members of virtual communities into new product development. Electronic Commerce Research, 2006. 6(1): p. 57-73.
69.          Bayraktar, E., et al., Evolution of operations management: past, present and future. Management Research News, 2007. 30(11
Page:): p. 843 – 871.
70.          Ruikar, D., et al., Using the semantic web for project information management. Facilities, 2007. 25(13/14): p. 507 – 524.
71.          Hinds, P.J. and M. Mortensen, Understanding Conflict in Geographically Distributed Teams: The Moderating Effects of Shared Identity, Shared Context, and Spontaneous Communication. Organization Science, 2005. 16(3): p. 290-307.
72.          Kayworth, T.R. and D.E. Leidner, Leadership Effectiveness in Global Virtual Teams  Management Information Systems, 2002. 18(3): p. 7 – 40
73.          Wong, S.S. and R.M. Burton, Virtual Teams: What are their Characteristics, and Impact on Team Performance? Computational & Mathematical Organization Theory, 2000. 6(4): p. 339-360.
74.          Ramayah, T., et al., Internal Group Dynamics, Team Characteristics and Team Effectiveness: A Preliminary Study of Virtual Teams. The International Journal of Knowledge, Culture and Change Management, 2003. 3: p. 415-435.
75.          Bell, B.S. and S.W.J. Kozlowski, A Typology of Virtual Teams: Implications for Effective Leadership. Group and Ol’2anization Management, 2002. 27(1): p. 14-49.
76.          Griffith, T.L., J.E. Sawyer, and M.A. Neale, Virtualness and Knowledge in Teams: Managing the Love Triangle in Organizations, Individuals, and Information Technology. MIS Quarterly, 2003. 27(2): p. 265-287.
77.          Shachaf, P., Bridging cultural diversity through e-mail. Journal of Global Information Technology Management, 2005. 8(2): p. 46-60.
78.          Jacobsa, J., et al., Exploring defect causes in products developed by virtual teams Information and Software Technology, 2005. 47(6): p. 399-410.
79.          Kirkman, B.L., et al., Five challenges to virtual team success: lessons from Sabre Inc. Academy of Management Executive, 2002. 16(3): p. 67-79.
80.          Taifi, N., Organizational Collaborative Model of Small and Medium Enterprises in the Extended Enterprise Era: Lessons to Learn from a Large Automotive Company and its dealers’ Network., in Proceedings of the 2nd PROLEARN Doctoral Consortium on Technology Enhanced Learning, in the 2nd European Conference on Technology Enhanced Learning. 2007, CEUR Workshop Proceedings.: Crete, Greece.
81.          Baskerville, R. and J. Nandhakumar, Activating and Perpetuating Virtual Teams: Now That We’re Mobile, Where Do We Go? IEEE Transactions on Professional Communication, 2007. 50(1): p. 17 – 34

The best selection of "Virtual R&D Teams" publications: Virtual Teams and Management Challenges

The best selection of "Virtual R&D Teams" publications: Virtual R&D Teams: A potential growth of education-industry collaboration

$
0
0

Virtual R&D Teams: A potential growth of education-industry collaboration

Virtual R&D Teams: A potential growth of education-industry collaboration

Issues: Fall 2011 - Volume 9 Issue 4
Posted On 2012-02-24 14:33:41
Author(s): Nader Ale Ebrahim, Shamsuddin Ahmed, and Zahari Taha
Rating: 10.0/10 (1 vote cast)
Print Friendly
Introduction
With the advent of the global economy and high-speed Internet, online collaboration is fast becoming the norm in education and industry [1]. Information technology (IT) creates many new inter-relationships among businesses, expands the scope of industries in which a company must compete to achieve tcompetitive advantage. Information systems and technology allow companies to coordinate their activities in distant geographic locations [2]. IT is providing the infrastructure necessary to support the development of new collaboration forms among industry and education. Virtual research and development (R&D) teams represent one such relational form, one that could revolutionize the workplace and provide organizations with unprecedented levels of flexibility and responsiveness [3-4]. Virtual teams give many advantages to organizations, including increased knowledge sharing [5] and improve organizational performance [6]. Virtual teams have altered the expectations and boundaries of knowledge worker’s interactions. Many R&D organizations and teams currently use a specialized knowledge portal for research collaboration and knowledge management [7]. Hence, the move towards a virtual world is becoming ever more relevant to industry and education as organizations outsource activities across national geographic boundaries [8].
The purpose of this study is to extend the research finding of virtual R&D teams in small and medium-sized enterprises to industry-education collaboration. The further outline of this paper is as first, discuss the different aspects of virtual teams and its relationships with SMEs, and then briefly explore the research methodology. Following, elaborate on the empirical findings and finally, analysis the data and conclude the paper.
Aspects of Virtual Teams
Definition of Virtual Team
Gassmann and Zedtwitz [9] defined “virtual team as a group of people and sub-teams which interact through interdependent tasks guided by common purpose and work across links strengthened by information, communication, and transport technologies.” Different authors have identified diverse definition [10]. Reference [11] developed one of the most comprehensive and widely accepted definitions of virtual teams: “virtual team is the small temporary groups of geographically, organizationally and/or time dispersed knowledge workers who coordinate their work, predominantly with electronic information and communication technologies in order to accomplish one or more organization tasks.”
Benefits and Pitfalls of Virtual Teams
The availability of a flexible and configurable base infrastructure is one of the main advantages of agile virtual teams [11]. Virtual team may allow people to collaborate with more productivity at a distance [12]. Virtual teams reduce time-to-market [13]. Lead time or time to market has been generally admitted to be one of the most important keys for success in manufacturing companies [14]. A potential advantage of virtual teams is their ability to digitally or electronically unite experts in highly specialized fields working at great distances from each other [15]. Virtual teams are enlightening and managing creativity [16] and useful for projects that require cross-functional or cross boundary skilled inputs [17].
As a drawback, virtual teams are particularly weak at mistrust, communication and power struggles [15]. Cultural and functional diversity in virtual teams leads to differences in the members thought processes [18]. Virtual teams will not totally replace conventional teams. Although virtual teams are and will continue to be an important and necessary type of work arrangement, they are not appropriate for all circumstances [19]. Hence, the complexity of management and coordination to choose the best collaboration tools will increases.
SMEs and Virtual Teams
SMEs need to focus on core competences for efficiency matters; they need to cooperate with external partners such as an educational institute to compensate for other competences and resources. Reference [20] found that managers of SMEs should invest less in tangible assets, but more in those areas that will directly generate their future competitive advantage (e.g., in R&D to generate knowledge, and in their employees’ creativity to stimulate incremental innovations in already existing technologies). The combination of explosive knowledge growth and inexpensive information transfer creates a fertile soil for unlimited virtually invention [21]. While, it is widely known that many big corporations have already invested in the information technology (IT) as they have come to realize the advantages and the competitive edge they will gain from IT. It is believed that SMEs, without investing heavily in total solution systems, can still benefit from the available information technology [22]. Virtuality has been presented as one solution for SMEs aiming to increase their competitiveness [23]. The SMEs are one of the sectors that have a strong potential to benefit from advances of virtual teams and the adaptation of new collaboration modes [24].
Methodology
Data for this research is gathered from the desk study and survey in Malaysian and Iranian small and medium-sized enterprises (SMEs). A web based questionnaires is designed and distributed between manufacturing SMEs. The rapid expansion of Internet users has given web-based surveys the potential to become a powerful tool in survey research [25]. Reference [26] findings encourage social researchers to use web-based questionnaires with confidence and the data produced by web-based questionnaires is equivalent to that produced by paper-based questionnaires.
The main sampling target was managing director, R&D manager, new product development manager, project and design manager and appropriate people who were most familiar with the R&D concern in the firm. A Likert scale from 1 to 5 was used. This set up gave respondents a series of attitude dimensions. For each dimension, the respondent was asked whether, and how strongly, they agree or disagree to each dimension using a point rating scale. Based on collected data some interpretations of the current situation of SMEs to employ virtual R&D teams are developed. Statistical methods and analysis are carried out to examine the SMEs readiness for education-industry collaboration.
Data Collection and Analysis
The empirical data has been collected through on-line questionnaires with manufacturing SMEs in Malaysia and Iran. Out of the 3625 companies targeted, 947 responded, 210 completed the questionnaire and the rest were partially-respondents. The response rate was satisfactory since accessing the managers is usually difficult. Table 1 summarized online survey data collection. Although the on-line questionnaire sent to the targeted SMEs in the both countries, only 91 firms were met the criteria of SMEs definition in this research so the rest of responded deducted from analysis.
Table 1 Summarized on-line survey data collection
Total of emails sent to companies3625
Total responses947
Total responses / sent (%)26.1
Total completed210
Total completed / sent (%)5.8
Response rate (%)22.2

A cross-tabulation descriptive statistics employed to find the frequency and relationship between the country and virtual team as illustrate in Table 2. The result shows that in the sample 53.8% of targeted SMEs employed virtual teams in R&D and Iranian SMEs employed virtual teams more than two times of Malaysian SMEs 71.4 and 33.3 percent respectively.
The mean scores for frequency of use to exchange business shows that E-mail is the most frequently used tool for all teams in Malaysia and Iran. Personal telephone call is second most frequently used tool in selected countries. Malaysian firms used more face to face interaction than Iranian ones. On the other hand, team base communication technologies such as shared database, group telephone conference, electronic whiteboard and video conference were not often used.
The last sections of the questionnaire developed to identify the requirements of the SMEs in determining the appropriate collaborative tools. The Likert scale ranged from “1″ for not important to “5″ for extremely important, with “4″ as the neutral point. The Likert mean was 3.31 (Figure 1) on the 5-point scale for demand of “online training and e-learning”. The score is clearly in the direction that, SMEs needs to the education-industry collaboration. Hence, sample SMEs in Malaysia and Iran are enthusiastic over use virtual teams for industry-education collaboration. This empirical study across countries shows a substantial and increasing return to virtual teams in SMEs. New technologies open up opportunities for small firms to expand their collaboration beyond firms’ borders.

Table 2 Cross-tabulation between country and virtual teams
   With Virtual TeamsTotal
  YesNO
IranCount351449
% within Country71.4%28.6%100.0%
MalaysiaCount142842
% within Country33.3%66.7%100.0%
TotalCount494291
% of Total53.8%46.2%100.0%


Figure 1 The 5-point scale for demand of “online training and e-learning”
Conclusion
Nowadays, distance between team members or differences in time zones, are not barriers to industry and education collaborations. Using a virtual R&D team’s context as a collaborating environment provides industry management with opportunities to acquire some of the technical skills required for the professional workplace. The paper concludes that virtual R&D teams and industry-education collaboration have much more benefits than disadvantages. In fact, selecting the appropriate sets of communication tools are challenging for the virtual team’s managers.
Above 46% of SMEs in selected countries are still avoiding to use virtual teams. Today’s combative environments dictate a new model of communication as a basic requirement. The SMEs in Iran and Malaysia have to restructure their approach to employ virtual teams. Many SMEs have limited recourses, and it is well-known for their dynamic behavior in contrast the difficulty of diverting skilled personnel from day-by-day activities, to undertake process re-engineering and R&D. Therefore, applying virtual R&D teams in SMEs is a foundation of high growth industry-education collaboration.
Future research would now seem to be essential for developing a comprehensive study, combining survey with case studies in various sizes of companies and types of activities (e.g. research and development and new product development). Such a study needs to investigate a larger sample of virtual teams from different sectors. In a bigger group, it is possible to compare the results between countries more precisely.
Acknowledgment
This study is carried out as a part of funded research by a grant from the University of Malaya (grant No. PS404/2009C), the authors acknowledge this support.
References
[1]           R. Ubell, Ed., Virtual Teamwork: Mastering the Art and Practice of Online Learning and Corporate Collaboration John Wiley & Sons, Inc., June 2010, p.^pp. Pages.
[2]           M. Fathian, et al., “E-readiness assessment of non-profit ICT SMEs in a developing country: The case of Iran,” Technovation, vol. 28, pp. 578-590, 2008.
[3]           A. Powell, et al., “Virtual teams: a review of current literature and directions for future research,” The Data base for Advances in Information Systems, vol. 35, pp. 6-36, 2004.
[4]           N. Ale Ebrahim, et al., “Virtual Teams for New Product Development – An Innovative Experience for R&D Engineers,” European Journal of Educational Studies, vol. 1, pp. 109-123, 2009.
[5]           D. J. Pauleen, “An Inductively Derived Model of Leader-Initiated Relationship Building with Virtual Team Members,” Journal of Management Information Systems, vol. 20, pp. 227-256, 2003.
[6]           S. A. Furst, et al., “Managing the life cycle of virtual teams,” Academy of Management Executive, vol. 18, pp. 6-20, 2004.
[7]           H. J. Lee, et al., “A contingent approach on knowledge portal design for R&D teams: Relative importance of knowledge portal functionalities,” Expert Systems with Applications, vol. 36, pp. 3662-3670, 2009.
[8]           A. Williams, et al., “Virtual environments: lessons from industry transferred to distance-learning education,” in The Queensland University of Technology, Research Week International Conference, Brisbane, Australia, 2005.
[9]           O. Gassmann and M. Von Zedtwitz, “Trends and determinants of managing virtual R&D teams,” R&D Management, vol. 33, pp. 243-262, 2003.
[10]         N. Ale Ebrahim, et al., “Virtual Teams: a Literature Review,” Australian Journal of Basic and Applied Sciences, vol. 3, pp. 2653-2669, 2009.
[11]         N. Ale Ebrahim, et al., “Virtual R & D teams in small and medium enterprises: A literature review,” Scientific Research and Essay, vol. 4, pp. 1575-1590, December 2009.
[12]         O. Gassmann and M. Von Zedtwitz, Innovation Processes in Transnational Corporations: Elsevier Science Ltd, 2003.
[13]         A. May and C. Carter, “A case study of virtual team working in the European automotive industry,” International Journal of Industrial Ergonomics, vol. 27, pp. 171-186, 2001.
[14]         M. Sorli, et al., “Managing product/process knowledge in the concurrent/simultaneous enterprise environment,” Robotics and Computer-Integrated Manufacturing, vol. 22, pp. 399-408, 2006.
[15]         B. Rosen, et al., “Overcoming Barriers to Knowledge Sharing in Virtual Teams,” Organizational Dynamics, vol. 36, pp. 259-273, 2007.
[16]         V. Badrinarayanan and D. B. Arnett, “Effective virtual new product development teams: an integrated framework,” Journal of Business & Industrial Marketing, vol. 23, pp. 242-248, 2008.
[17]         L. Lee-Kelley and T. Sankey, “Global virtual teams for value creation and project success: A case study,” International Journal of Project Management vol. 26, pp. 51-62, 2008.
[18]         L. Poehler and T. Schumacher, “The Virtual Team Challenge: Is It Time for Training?,” presented at the PICMET 2007, Portland, Oregon – USA 2007.
[19]         J. E. Nemiro, “The Creative Process in Virtual Teams ” Creativity Research Journal, vol. 14, pp. 69 – 83, 2002.
[20]         O. Gassmann and M. M. Keupp, “The competitive advantage of early and rapidly internationalising SMEs in the biotechnology industry: A knowledge-based view,” Journal of World Business, vol. 42, pp. 350-366, 2007.
[21]         R. E. Miles, et al., “TheFuture.org ” Long Range Planning, vol. 33, pp. 300-321, 2000.
[22]         A. V. Mohan, et al., “Efficacy of virtual organization concept in enhancing business operations: a case study in Malaysian fashion  (footwear) industry,” in Portland International Conference on Management of Engineering and Technology (PICMET ’99), Portland, OR ,USA, 1999, p. 499 vol.1.
[23]         T. Pihkala, et al., “Virtual organization and the SMEs: a review and model development,” Entrepreneurship & Regional Development, vol. 11, pp. 335 – 349, 1999.
[24]         N. Ale Ebrahim, et al., “SMEs and Virtual R&D Teams: A Motive Channel for Relationship between SMEs,” in The International Conference for Technical Postgraduates (TECHPOS 2009), The Legend Hotel, Kuala Lumpur, Malaysia, 2009, pp. 1-7.
[25]         S. J. Sills and C. Song, “Innovations in Survey Research: An Application of Web-Based Surveys,” Social Science Computer Review, vol. 20, pp. 22-30, February 2002.
[26]         M. Denscombe, “Web-Based Questionnaires and the Mode Effect: An Evaluation Based on Completion Rates and Data Contents of Near-Identical Questionnaires Delivered in Different Modes,” Social Science Computer Review, vol. 24, pp. 246-254, May 2006.

The best selection of "Virtual R&D Teams" publications: Virtual R&D Teams: A potential growth of education-industry collaboration

The best selection of "Virtual R&D Teams" publications: The Effectiveness of Virtual R&D Teams in SMEs: Experiences of Malaysian SMEs

$
0
0

The Effectiveness of Virtual R&D Teams in SMEs: Experiences of Malaysian SMEs

The effectiveness of virtual R&D teams in SMEs: experiences of Malaysian SMEs

Ale Ebrahim, N.; Abdul Rashid, S.H.; Ahmed, S.; Taha, Z. (2011) The effectiveness of virtual R&D teams in SMEs: experiences of Malaysian SMEs.Industrial Engineering and Management Systems, 10 (2). pp. 109-114. ISSN 1598-7248
[img]PDF (The number of small and medium enterprises (SMEs), especially those involved with research and development (R&D) programs and employed virtual teams to create the greatest competitive advantage from limited labor are increasing.) - Published Version
Available under License Creative Commons Public Domain Dedication.

Download (85Kb) | Preview

Abstract

The number of small and medium enterprises (SMEs), especially those involved with research and development (R&D) programs and employed virtual teams to create the greatest competitive advantage from limited labor are increasing. Global and localized virtual R&D teams are believed to have high potential for the growth of SMEs. Due to the fast-growing complexity of new products coupled with new emerging opportunities of virtual teams, a collaborative approach is believed to be the future trend. This research explores the effectiveness of virtuality in SMEs’ virtual R&D teams. Online questionnaires were emailed to Malaysian manufacturing SMEs and 74 usable questionnaires were received, representing a 20.8 percent return rate. In order to avoid biases which may result from pre-suggested answers, a series of open-ended questions were retrieved from the experts. This study was focused on analyzing an open-ended question, whereby four main themes were extracted from the experts’ recommendations regarding the effectiveness of virtual teams for the growth and performance of SMEs. The findings of this study would be useful to product design managers of SMEs in order to realize the key advantages and significance of virtual R&D teams during the new product development (NPD) process. This in turn, leads to increased effectiveness in new product development's procedure.
Item Type:Article
Creators:
  1. Ale Ebrahim, N.(Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya )
  2. Abdul Rashid, S.H.(Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya )
  3. Ahmed, S.(Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya )
  4. Taha, Z.(Faculty of Manufacturing Engineering and Management Technology, University Malaysia Pahang)
Journal or Publication Title:Industrial Engineering and Management Systems
Uncontrolled Keywords:Virtual Teams; New Product Development; Survey Finding; Small and Medium Enterprises
Subjects:H Social Sciences > HB Economic Theory > Competition. Production. Wealth
H Social Sciences > HD Industries. Land use. Labor
T Technology > T Technology (General)
Divisions:Faculty of Engineering
Depositing User:Mr. Nader Ale Ebrahim
Date Deposited:06 Oct 2011 09:18
Last Modified:06 Oct 2011 09:18
URI:http://eprints.um.edu.my/id/eprint/2162

The best selection of "Virtual R&D Teams" publications: The Effectiveness of Virtual R&D Teams in SMEs: Experiences of Malaysian SMEs

The best selection of "Virtual R&D Teams" publications: WORK TOGETHER… WHEN APART CHALLENGES AND WHAT IS NEED FOR EFFECTIVE VIRTUAL TEAMS

$
0
0

WORK TOGETHER… WHEN APART CHALLENGES AND WHAT IS NEED FOR EFFECTIVE VIRTUAL TEAMS

WORK TOGETHER… WHEN APART CHALLENGES AND WHAT IS NEED FOR EFFECTIVE VIRTUAL TEAMS

MR. R. R. RAVAL

Lecturer, Mba Department,C U Shah College Of Engineering And Technology.
Nr. Kotharia Village, Wadhwan City 363030

rahulraval@rediffmail.com


ABSTRACT :Increasingly competitive global markets and accelerating technological changes have increased the need for people to contact via electronic medium to have daily updates, the people those who could not able to meet face to face every day. Those who contact via electronic medium i.e. Virtual Team, are having number of benefit but to achieve these potential benefits, however, leaders need to overcome liabilities inherent in the lack of direct contact among team members and managers. Team members may not naturally know how to interact effectively across space and time. By this paper author try to throw some lights on the challenges that virtual team faces and try to elaborate what is needed for Virtual Team.

Key Words: Team, Virtual Team




1. TEAM
The team approach to managing organization is having a diverse and substantial impact on organizations and individuals. Teams promise to be a cornerstone of progressive management for the foreseeable future. According to the management expert Peter Drucker, tomorrow’s organizations will be flatter, information based, and organized around teams.
A Team is small number of people with complementary skills who are committed to a common purpose, common performance goals, and an approach for which they hold themselves mutually accountable.
2. VIRTUAL TEAM
2.1 Introduction
These are the teams that may never actually meet together in the same room-their activities take place on the computer via teleconferring and other electronic information system.
Teamwork has been around since before our ancestors gathered up their spears and learned how to work together to gang up on mastodons and saber-toothed tigers. Many experts agree that teams are the primary unit of performance in any organization. Today there is a new kind of team – a “virtual” team made up of people who communicate electronically. Its members may hardly ever see each other in person. in fact, they may never meet at all, expect in cyberspace.
There are several different definitions of virtual teams, but what these definitions have in common is that, virtual team members are physically separated (by time and / or space) and that virtual team

members primarily interact electronically. This researcher defines virtual teams as teams of people
who primarily interact electronically and who may meet face-to-face occasionally. In simple terms, then;
virtual teams = teams + electronic links + groupware Eq. 1.
2.2 Types of Virtual Team
Generally, we can differentiate various forms of “virtual” work depending on the number of persons involved and the degree of interaction between them. The firs t is “telework ” (telecommuting) which is done partially or completely outside of the main company workplace with the aid of information and telecommunication services. “Virtual groups” exist when several teleworkers are combined and each member reports to the same manager. In contrast, a “virtual team” exist s when the members of a virtual group interact with each other in order to accomplish common goals. Finally, “virtual communities” are larger entities of distributed work in which members participate via the internet, guided by common purposes, roles and norms.
Cascio and Shurygailo(2003) have clarified the difference form of virtual team by classifying it with respect to two primary variables namely; the number of location (one or more) and the number of managers (one or more). Table 1 illustrates this graphically.
Therefore there are four categories of teams:
  1. Teleworkers : A single manager of a team at one location
  2. Remote team: A single manager of a team distributed across multiple location
  3. Matrixed teleworkers: Multiple manager of a team at one location
  4. Matrixed remote teams: Multiple managers across multiple locations

Table 1: Forms of Virtual Teams (Cascio and Shurygailo, 2003)
2.3 Challenges for Virtual Team members
The classic co-located team is always the best option. This set-up is not always feasible and distributed virtual team is used instead. There are a number of challenges for virtual teams.
Virtual team face particular challenge involving trust (Bal and Teo, 2001b) which is a key element to overcome selfish interest and build successful interaction, effective communication (Beranek and Martz, 2005) that is even more critical for success in the virtual setting (Shachaf and Hara, 2005), deadlines (Jarvenpaa and Leidner, 1999)12, and team cohesiveness (Dineen, 2005). While there are great advantages that come with the adoption of the virtual teams, new challenges rise with them.Cascio (2000) declared that there are five main disadvantages to a virtual team: lack of physical interaction, loss of face-to-face synergies, lack of trust, greater concern with predictability and reliability, and lack of social interaction.Virtual teams are challenged because they are virtual: they exist trough computer mediated communication technology rather than face-to-face interaction. Sometimes they report to different supervisors and they function as empowered professionals who are expected to use their initiative and resources to contribute to accomplishment of the team goal.
2.4 What is needed for Effective Virtual Team
Number of studies and literature shows the factors that impact on the effectiveness of virtual teams are still ambiguous. Many of the acknowledged challenges of effective virtual team working focus on ensuring good communication among all members of the distributed team. For example, Jarvenpaa and Leidner (1999) found that regular and timely communication feedback was key to building trust and commitment in distributed teams. Lin et al.(2008) study indicates that social dimensional factors need to be considered early on in the virtual team creation process and are critical to the effectiveness of the team. Communication is a tool that directly influences the social dimensions of the team and in addition the performance of the team has a positive impact on satisfaction with the virtual team.
For teams moving from co -location to virtual environments, an ability to adapt and change can be a long process riddled with trial and error scenarios. This process is seen as necessary to encourage effective virtual teams (Kirkman et al., 2002). Despite weak ties between virtual team members, ensuring lateral communication maybe adequate for effective virtual team performance. In terms of implementation, lateral communication in both virtual context and composition teams can be increased by reducing the hierarchical structure of the team (i.e. a flatter reporting structure and/or decentralization) and the use of enabling computer-mediated communication tools (Wong and Burton, 2000).
Shachaf and Hara (2005) suggest four dimensions of effective virtual team leadership.
  1. Communication (the leader provides continuous feedback, engages in regular and prompt communication, and clarifies tasks);
  2. Understanding (the leader is sensitive to schedules of members , appreciates their opinions and suggestions, cares about member’s problems, gets to know them, and expresses a personal interest in them);
  3. Role clarity (the leader clearly defines responsibilities of all members, exercises authority, and mentors virtual team members); and
  4. Leadership attitude (the leader is assertive yet not too “bossy,” caring, relates to members at their own levels, and maintains a consistent attitude over the life of the project).
Bal and Teo (2001c) similar to their study in (1999) by observation and interview identified 12 elements for effective virtual team working. It is illustrated in below Figure 1.

Fig 1: Model for Effective virtual team working






3. CONCLUSION
Strong business and social pressures are driving the adoption of virtual team working. This paper with a comprehensive review of literature and related resources covering the topic along with Bal and Teo (2001c), find that success in implementing virtual team working is more about processes and people than about technology. Virtual teams offer many  benefits to organizations striving to handle a more demanding work environment, but also present many challenges and potential pitfalls.
4.REFERENCE:
[1]                 Anderson, A. H., R. Mcewan, J. Bal and J. Carletta, 2007. Virtual team meetings: An analysis of communication and context. Computers in Human Behavior, 23: 2558-2580
[2]                 Bal, J. and P.K. Teo, 2001b. Implementing virtual team working: Part 2 - a literature review. Logistics Information Management, 14: 208 - 222.
[3]                 Bal, J. and P.K. Teo, 2001c. Implementing virtual teamworking: Part 3 - a meth o d o lo g y for introducing virtual team working. Logistics Information Management, 14: 276 - 292.
[4]                 Barner, R. (1996, March-April). Seven changes that will challenge managers and workers. The Futurist. 30(2), 14-18
[5]                 Beranek, P.M. and B. Martz, 2005. Making virtual teams more effective: improving relational links. Team Performance Management, 11: 200-213.
[6]                 Cascio, W. F. and S. Shurygailo, 2003. E-Leadership and Virtual Teams. Organizational Dynamics, 31: 362-376.
[7]                 Cascio, W.F., 2000. Managing a virtual workplace. The Academy of Management Executive, 14: 81-90.
[8]                 Dineen, B. R., 2005. Teamxchange: A Team Project Experience Involving Virtual Teams and Fluid Team Membership. Journal of Management Education, 29: 593-616.
[9]                 Gaudes , A., B. Hamilton-bogart, S. Marsh and H. Robinson, 2007. A Framework for Constructing Effective Virtual Teams The Journal of E-working, 1: 83-97.
[10]             Hunsaker, P.L. and J.S. Hunsaker, 2008. Virtual teams: a leader's guide. Team Performance Management, 14: 86-101.
[11]              Jarvenpaa, S.L. and D.E. Leidner, 1999. Communication and Trust in Global Virtual Teams. Organization Science, 10: 791 - 815.
[12]              K. Aswathapa, “Organizational Behavior”, p. 320
[13]              Kartzenbach and smith, The Wisdom of Teams, p. 45.
[14]              Kirkman, B.L., B. Rosen, C.B. Gibson, P.E. Tesluk and S.O. Mcpherson, 2002. Five challenges to virtual team success: lessons from Sabre Inc. Academy of Management Executive, 16: 67-79.
[15]              Lin , C., C. Standing and Y.C. Liu, 2008. A model to develop effective virtual teams. Decision Support Systems ,45: 1031-1045.
[16]              Nader Ale Ebrahim, Shamsuddin Ahmed and Zahari Taha, VirtualTeams: a Literature Review,Aus tralian Journal of Bas ic and Applied Sciences , 3(3): 2653-2669, 2009
[17]              Nader Ale Ebrahim, Shamsuddin Ahmed and Zahari Taha. Australian Journal of Basic and Applied Sciences , 3(3): 2653-2669, 2009
[18]              P. F. Drucker, “ The Coming of the New Organization”,  Harward Business Review, Jan-Feb, 1988, Pp. 45-53
[19]              Precup, L., D. O'sullivan, K. Cormican and L. Dooley, 2006. Virtual team environment for collaborative research projects . International Journal of Innovation and Learning, 3: 77 – 94
[20]              Shachaf, P. and N. Hara, 2005. Team Effectiveness in Virtual Environments : An Ecological Approach. IN FERRIS, P.A.G., S., (Ed.) Teaching and Learning with Virtual Teams. Idea Group Publishing.
[21]              Smith, R. W. (March-April 1994). Bell Atlantic’s virtual work force. The Futurist, 28(2), 13
[22]              Sproull, L. and Kiesler, S. (1994). Connections – new ways of working in the networked organization. The MIT Press
[23]              Wong, S.S. and R.M. Burton,( 2000). Virtual Teams: What are their Characteristics, and Impact on Team Performance? Computational and Mathematical Organization Theory, 6: 339-360.


Cite as:  Raval, M. R. R., Ale Ebrahim, N., Ahmed, S., & Taha, Z. (2010). WORK TOGETHER… WHEN APART CHALLENGES AND WHAT IS NEED FOR EFFECTIVE VIRTUAL TEAMS. [Review]. Journal of Information, Knowledge and Research in Business Management and Administration, 1(1), 1-3.


The best selection of "Virtual R&D Teams" publications: WORK TOGETHER… WHEN APART CHALLENGES AND WHAT IS NEED FOR EFFECTIVE VIRTUAL TEAMS

The best selection of "Virtual R&D Teams" publications: Virtual R&D teams and SMEs growth: A comparative study between Iranian and Malaysian SMEs

$
0
0

Virtual R&D teams and SMEs growth: A comparative study between Iranian and Malaysian SMEs

African Journal of Business Management Vol. 4(11), pp. 2368-2379, 4 September, 2010     
ISSN 1993-8233©2010 Academic Journals 
 
Full Length Research Paper

Virtual R&D teams and SMEs growth: A comparative study between Iranian and Malaysian SMEs

Nader Ale Ebrahim1*, Shamsuddin Ahmed1 and Zahari Taha2

1Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya (UM), Kuala Lumpur, 50603, Malaysia.
2Department of Manufacturing Engineering, University Malaysia Pahang, Gambang, Kuantan, Pahang, 26300, Malaysia.

*Corresponding author. E-mail: aleebrahim@perdana.um.edu.my.

Accepted 13 July, 2010
 
 Abstract
 
This paper explores potential advantages of using virtual teams for small and medium-sized enterprises (SMEs) with a comprehensive review on various aspects of virtual teams. Based on the standing of the pertinent literatures, attempt has been made to study the aspects by online survey method in Iran and Malaysia. In both countries, SMEs play an important role in their economies, employments, and capacity building. Virtual R&D team can be one of the means to increase SMEs efficiency and competitiveness in their local as well as global markets. In this context, surveys have been conducted to evaluate the effects of virtuality to the growth of SMEs. The study addresses some differences between two countries in engaging virtual research and development (R&D) teams in their SMEs. It is observed that there is a significant difference between the SMEs turnover that employed virtual team and that did not employ the virtual team. The way for further studies and recommend improvements are proposed.

Key words: Virtual R&D team, small and medium enterprises, survey, developing countries.

The best selection of "Virtual R&D Teams" publications: Virtual R&D teams and SMEs growth: A comparative study between Iranian and Malaysian SMEs

The best selection of "Virtual R&D Teams" publications: Critical Factors for New Product Developments in SMEs Virtual Team

$
0
0

Critical Factors for New Product Developments in SMEs Virtual Team

African Journal of Business Management Vol. 4(11), pp. 2247-2257, 4 September, 2010     
ISSN 1993-8233©2010 Academic Journals 
 
Full Length Research Paper

Critical factors for new product developments in SMEs virtual team

Nader Ale Ebrahim*, Shamsuddin Ahmed and Zahari Taha

Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya (UM), Kuala Lumpur 50603, Malaysia.

*Corresponding author. E-mail: aleebrahim@perdana.um.edu.my. Tel: +60-17-6140012.

Accepted 15 July, 2010
 
 Abstract
 
Small and medium enterprises (SMEs) are considered as an engine for economic growth all over the world and especially for developing countries. During the past decade, new product development (NPD) has increasingly been recognized as a critical factor in ensuring the continued survival of SMEs. On the other hand, the rapid rate of market and technological changes has accelerated in the past decade, so this turbulent environment requires new methods and techniques to bring successful new products to the marketplace. Virtual team can be a solution to answer the requested demand. However, literature have shown no significant differences between traditional NPD and virtual NPD in general, whereas NPD in SME’s virtual team has not been systematically investigated in developing countries. This paper aims to bridge this gap by first reviewing the NPD and its relationship with virtuality and then identifies the critical factors of NPD in virtual teams. The statistical method was utilized to perform the required analysis of data from the survey. The results were achieved through factor analysis at the perspective of NPD in some Malaysian and Iranian manufacturing firms (N = 191). The 20 new product development factors were grouped into five higher level constructs. It gives valuable insight and guidelines, which hopefully will help managers of firms in developing countries to consider the main factors in NPD.

Key words: Survey findings, new product development, factor analysis, virtual team.

The best selection of "Virtual R&D Teams" publications: Critical Factors for New Product Developments in SMEs Virtual Team

The best selection of "Virtual R&D Teams" publications: SMEs; Virtual research and development (R&D) teams and new product development: A literature review

$
0
0

SMEs; Virtual research and development (R&D) teams and new product development: A literature review

International Journal of the Physical SciencesVol. 5(7), pp. 916–930, July 2010
ISSN 1992-1950 ©2010 Academic Journals  


Review

SMEs; Virtual research and development (R&D) teams and new product development: A literature review

Nader Ale Ebrahim*, Shamsuddin Ahmed and Zahari Taha

Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya (UM), Kuala Lumpur 50603, Malaysia.

*Corresponding author. E-mail: nader.ale.um@gmail.com.

Accepted 10 June, 2010.
 
Abstract
 

Small and medium-sized enterprises (SMEs) are indeed the engines of global economic growth. Their continued growth is a major subject for the economy and employment of any country. Towards that end, virtual research and development (R&D) could be a viable option to sustain and ease the operations of SMEs. However, literature shows there has not been a great deal of research into the diverse characteristic of virtual R&D teams in SMEs. This article provides a comprehensive literature review on different aspects of virtual R&D teams collected from the reputed publications. The purpose of the literature review is to provide an outline on the structure and dynamics of R&D collaboration in SMEs. Specifying the rationale and relevance of virtual teams, the relationship between virtual R&D team for SMEs and new product development (NPD) has been examined. It concludes with identifying the gaps and feebleness in the existing literatures and calls for future research in this area. It is argued to form of virtual R&D team deserves consideration at top level management for venturing into the new product development within SMEs.

Key words: Virtual teams, small and medium enterprises, new product development, R&D.

The best selection of "Virtual R&D Teams" publications: SMEs; Virtual research and development (R&D) teams and new product development: A literature review

The best selection of "Virtual R&D Teams" publications: Virtual R & D teams in small and medium enterprises: A literature review

$
0
0

Virtual R & D teams in small and medium enterprises: A literature review

Scientific Research and Essays Vol. 4 (13), pp. 15751590, December 2009
ISSN 1992- 2248© 2009 Academic Journals  


Review

Virtual R & D teams in small and medium enterprises: A literature review

Nader Ale Ebrahim*, Shamsuddin Ahmed and Zahari Taha

Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Malaysia.

*Corresponding author. E-mail: aleebrahim@perdana.um.edu.my.

Accepted 21 December, 2009.
 
   Abstract
 
Small and medium enterprises (SMEs) are the driving engine behind economic growth. While SMEs play a critical role in generating employment and supporting trade, they face numerous challenges, the prominent among them are the need to respond to fasting time-to-market, low-cost and rapid solutions to complex organizational problems. Towards that end, research and development (R & D) aspect deserves particular attention to promote and facilitate the operations of SMEs. Virtual R & D team could be a viable option. However, literature shows that virtual R & D teaming in SMEs is still at its infancy. This article provides a comprehensive literature review on different aspects of virtual R & D teams collected from the reputed publications. The purpose of the state-of-the-art literature review is to provide an overview on the structure and dynamics of R & D collaboration in SMEs. Specifying the foundation and importance of virtual teams, the relationship between virtual R & D team and SMEs has been examined. It concludes with the identification of the gaps in the existing literatures and calls for future research. It is argued that setting-up an infrastructure for virtual R & D team in SMEs still requires a large amount of engineering efforts and deserves consideration at top level management.

Key words: Virtual teams, small and medium enterprises, literature review.

The best selection of "Virtual R&D Teams" publications: Virtual R & D teams in small and medium enterprises: A literature review

The best selection of "Virtual R&D Teams" publications: Virtual Teams for New Product Development – An Innovative Experience for R&D Engineers

$
0
0

Virtual Teams for New Product Development – An Innovative Experience for R&D Engineers

Virtual Teams for New Product Development: An Innovative Experience for R&D Engineers

Nader Ale Ebrahim


University of Malaya - Department of Engineering Design and Manufacture, Faculty of Engineering

Shamsuddin Ahmed


University of Malaya (UM)

Zahari Taha


University of Malaya (UM)

October 30, 2009

European Journal of Educational Studies, Vol. 1, No. 3, pp. 109-123, October 2009

Abstract:     
New interaction tools such as internet allow companies to gain valuable input from research and development (R&D) engineers via virtual teams. Consequently, engineers also get more expertise in diminutive time frames. Virtual R&D teams present the key impetus to the technology acquisition process. The present knowledge-economy era is characterized by short product life-cycles. Virtual R&D teams may reduce time-to-market, make available a large pool of new product know-how and provide greater flexibilities, which are the key success factors in a competitive market. This comprehensive review contains almost 100 references and covers the recent literature with emphasis on the topic. The review has focused on authentic and reputed publications and extracts the results. This article presents the type of virtual teams and their main features and explains how virtual R&D team can play a prominent role in developing new products. The article is evolved future study guideline and also illustrates how to apply virtual interaction tools and integrate engineers into the innovation process. Management of virtual R&D teams in new product development (NPD) processes in an innovative, effective and efficient is of a high importance, but the issue has been poorly addressed in the previous studies. Findings show that virtual R&D team provides valuable input for new product development and R&D engineers are able to attain virtual experience.
  Number of Pages in PDF File: 15
Keywords: Virtual R&D Teams, New Product Development, Virtual Experience, R&D Engineers
Accepted Paper Series

The best selection of "Virtual R&D Teams" publications: Virtual Teams for New Product Development – An Innovative Experience for R&D Engineers

The best selection of "Virtual R&D Teams" publications: Innovation and R&D Activities in Virtual Team

$
0
0

Innovation and R&D Activities in Virtual Team

Innovation and R&D Activities in Virtual Team

Nader Ale Ebrahim


University of Malaya - Department of Engineering Design and Manufacture, Faculty of Engineering

Shamsuddin Ahmed


University of Malaya (UM)

Zahari Taha


University of Malaya (UM)

August 11, 2009

European Journal of Scientific Research, Vol. 34, No. 3, pp. 297-307, 2009

Abstract:     
Innovation plays a central role in economic development, at the regional and national level. In the competitive environment companies are obliged to produce more rapidly, more effectively and more efficiently in new product development, which is a result of research and development (R&D) activities. It is necessary for them to put together different capabilities and services with the goal, through cooperation between suppliers and customers, service providers and scientific institutions to achieve innovations of high quality. Depending on the type of industry, the type of business, the type of innovation and the strategic objectives that have been set, firms will regularly have to modify the way in which their R&D and innovation are organized. Nowadays, shift from serial to simultaneous and parallel working in innovation has become more commonplace. Literatures have shown that collaboration is as a meta-capability for innovation. By a comprehensive reviewing of literature this article after define virtual teams and its characteristics, addressing virtual environment innovation and the relationship to R&D activities. Finally conclude that innovation cannot be successful, unless the knowledge and information in the R&D project are effectively captured, shared and internalized by the R&D project’s virtual team members.
  Number of Pages in PDF File: 11
Keywords: Virtual team, Literature review, Innovation, Research and Development
Accepted Paper Series


The best selection of "Virtual R&D Teams" publications: Innovation and R&D Activities in Virtual Team

The best selection of "Virtual R&D Teams" publications: Modified Stage-Gate: A Conceptual Model of Virtual Product Development Process

$
0
0

Modified Stage-Gate: A Conceptual Model of Virtual Product Development Process

African Journal of Marketing Management Vol. 1 (9), pp.211–219, December 2009
© 2009 Academic Journals 


Review

Modified stage-gate: A conceptual model of virtual product development process

Nader Ale Ebrahim*, Shamsuddin Ahmed and Zahari Taha

Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia.

*Corresponding author. E-mail: aleebrahim@perdana.um.edu.my.

Accepted 9November, 2009
 
   Abstract
 
In today’s dynamic marketplace, manufacturing companies are under strong pressure to introduce new products for long-term survival with their competitors. Nevertheless, every company cannot cope up progressively or immediately with the market requirements due to knowledge dynamics being experienced in the competitive milieu. Increased competition and reduced product life cycles put force upon companies to develop new products faster. In response to these pressing needs, there should be some new approach compatible in flexible circumstances. This paper presents a solution based on the popular Stage-Gate system, which is closely linked with virtual team approach. Virtual teams can provide a platform to advance the knowledge-base in a company and thus to reduce time-to-market. This article introduces conceptual product development architecture under a virtual team umbrella. The paper describes all the major aspects of new product development (NPD), NPD process and its relationship with virtual teams, Stage-Gate system finally presents a modified Stage-Gate system to cope up with the changing needs. It also provides the guidelines for the successful implementation of virtual teams in new product development.

Key words: Modified stage-gate system, virtual product development, conceptual model.

The best selection of "Virtual R&D Teams" publications: Modified Stage-Gate: A Conceptual Model of Virtual Product Development Process

The best selection of "Virtual R&D Teams" publications: Virtual Teams: A Literature Review

$
0
0

Virtual Teams: A Literature Review

Virtual Teams: A Literature Review

Nader Ale Ebrahim


University of Malaya - Department of Engineering Design and Manufacture, Faculty of Engineering

Shamsuddin Ahmed


University of Malaya (UM)

Zahari Taha


University of Malaya (UM)

November 6, 2009

Australian Journal of Basic and Applied Sciences, Vol. 3, No. 3, pp. 2653-2669, 2009

Abstract:     
In the competitive market, virtual teams represent a growing response to the need for fasting time-to-market, low-cost and rapid solutions to complex organizational problems. Virtual teams enable organizations to pool the talents and expertise of employees and non-employees by eliminating time and space barriers. Nowadays, companies are heavily investing in virtual team to enhance their performance and competitiveness. Despite virtual teams growing prevalence, relatively little is known about this new form of team. Hence the study offers an extensive literature review with definitions of virtual teams and a structured analysis of the present body of knowledge of virtual teams. First, we distinguish virtual teams from conventional teams, different types of virtual teams to identify where current knowledge applies. Second, we distinguish what is needed for effective virtual team considering the people, process and technology point of view and underlying characteristics of virtual teams and challenges they entail. Finally, we have identified and extended 12 key factors that need to be considered, and describes a methodology focused on supporting virtual team working, with a new approach that has not been specifically addressed in the existing literature and some guide line for future research extracted.
  Number of Pages in PDF File: 17
Keywords: Virtual team, Literature review, Effective virtual team
Accepted Paper Series

The best selection of "Virtual R&D Teams" publications: Virtual Teams: A Literature Review
Viewing all 1665 articles
Browse latest View live